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Abstract
The strength of a dynamic language is also its weakness: run-time
flexibility comes at the cost of compile-time predictability. Many
of the hallmarks of dynamic languages such as closures, continu-
ations, various forms of reflection, and a lack of static types make
many programmers rejoice, while compiler writers, tool develop-
ers, and verification engineers lament. The dynamism of these fea-
tures simply confounds statically reasoning about programs that
use them. Consequently, static analyses for dynamic languages are
few, far between, and seldom sound.

The “abstracting abstract machines” (AAM) approach to con-
structing static analyses has recently been proposed as a method to
ameliorate the difficulty of designing analyses for such language
features. The approach, so called because it derives a function
for the sound and computable approximation of program behavior
starting from the abstract machine semantics of a language, pro-
vides a viable approach to dynamic language analysis since all that
is required is a machine description of the interpreter.

The AAM recipe as originally described produces finite state
abstractions: the behavior of a program is approximated as a finite
state machine. Such a model is inherently imprecise when it comes
to reasoning about the control stack of the interpreter: a finite state
machine cannot faithfully represent a stack. Recent advances have
shown that higher-order programs can be approximated with push-
down systems. However, such models, founded in automata theory,
either breakdown or require significant engineering in the face of
dynamic language features that inspect or modify the control stack.

In this paper, we tackle the problem of bringing pushdown
flow analysis to the domain of dynamic language features. We
revise the abstracting abstract machines technique to target the
stronger computational model of pushdown systems. In place of
automata theory, we use only abstract machines and memoization.
As case studies, we show the technique applies to a language
with closures, garbage collection, stack-inspection, and first-class
composable continuations.

1. Introduction
Good static analyses use a combination of abstraction techniques,
economical data structures, and a lot of engineering [7, 39]. The
cited exemplary works stand out from a vast amount of work attack-
ing the problem of statically analyzing languages like C. Dynamic
languages do not yet have such gems. The problem space is differ-
ent, bigger, and full of new challenges. The traditional technique of
pushing abstract values around a graph to get an analysis will not
work. The first problem we must solve is, “what graph?” as control-
flow is now part of the problem domain. Second, features like stack
inspection and first-class continuations are not easily shoe-horned
into a CFG representation of a program’s behavior. We need a new
approach.

Luckily, there is an alternative to the CFG approach to analysis
construction that is based instead on abstract machines, which are

one step away from interpreters (they are interderivable in several
instances [8]). This alternative, called abstracting abstract machines
(AAM) [34], is a simple idea that is generally applicable to even
the most dynamic of languages, e.g., JavaScript [19]. A downside
is that all effective instantiations of AAM are finite state approx-
imations. Finite state techniques cannot precisely predict where a
method or function call will return. Dynamic languages have more
sources for imprecision than non-dynamic languages (e.g., reflec-
tion, computed fields, runtime linking, eval) that all need proper
treatment in the abstract. If we can’t have precision in the presence
of statically unknowable behavior, we should at least be able to con-
tain it in the states it actually affects. Imprecise control flow due to
finite state abstractions is an unacceptable containment mechanism.
It opens the flood gate to imprecision flowing everywhere through
analyses’ predictions. It is also a solvable problem.

We extend the AAM technique to computably handle infinite
state spaces by adapting pushdown abstraction methods to abstract
machines. The unbounded stack of pushdown systems is the mech-
anism to precisely match calls and returns. We demonstrate the
essence of our pushdown analysis construction by first applying
the AAM technique to a call-by-value functional language (§2) and
then revising the derivation to incorporate an exact representation
of the control stack (§3). We then show how the approach scales to
stack-reflecting language features such as garbage collection and
stack inspection (§4), and stack-reifying features in the form of
first-class delimited control operators (§5). These case studies show
that the approach is robust in the presence of features that need to
inspect or alter the run-time stack, which previously have required
significant technical innovations [17, 36].

Our approach appeals to operational intuitions rather than au-
tomata theory to justify the approach. The intention is that the only
prerequisite to designing a pushdown analysis for a dynamic lan-
guage is some experience implementing interpreters; expertise in
automata theory or abstract domains is unneeded. With simple but
powerful tools in a large audience’s toolbelt, we hope this work will
help the community work towards technical feats like Astrée [7].
The large problem domain of analyzing dynamic languages needs
an army to tackle it, and we believe that AAM can feed that army.

2. The AAM methodology
Abstract machines are a versatile, clear and concise way to describe
the semantics of programming languages. They hit a sweet spot
in terms of level of discourse, and viable implementation strategy.
First year graduate students learn programming language seman-
tics with abstract machines. They also turn out to be fairly simple
to repurpose into static analyses for the languages they implement,
via the Abstracting Abstract Machines methodology [33]. The ba-
sic idea is that abstract machines implement a language’s concrete
semantics, so we transform them slightly so that they also imple-
ment a language’s abstract semantics (thus “abstracting” abstract
machines).
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AAM is founded on three ideas:

1. concrete and abstract semantics ideally should use the same
code, for correctness and testing purposes,

2. the level of abstraction should be a tunable parameter,

3. both of the above are achievable with a slight change to the
abstract machine’s state representation.

The first two points are the philosophy of AAM: correctness
through simplicity, reusability, and sanity checking with concrete
semantics. The final point is the machinery that we recount in this
section.

2.1 The CESK ∗
t machine schema

The case studies in this paper have full implementations in PLT
redex [12] available online.1 They all build off the call-by-value
untyped lambda calculus, whose semantics we recall in small-step
reduction semantics style:

E[(λx.e v)]z→β E[[v/x]e]
where E ∈ EvaluationContext ∶∶= [] ∣ (E e) ∣ (v E)
e ∈ Expr ∶∶= x ∣ (e e) ∣ v v ∈ Value ∶∶= λx.e

Although concise and well-structured for mathematical proofs, this
semantics does not reflect what an effective implementation looks
like. The context decomposition to find a redex (left hand side of
z→β), substitution and re-plugging are better understood as a pro-
cess that a machine goes through to perform a step. We thus start
with an abstract machine that manages these steps with a special
state representation: the CESK machine.2 The environment and
store work together to represent ongoing substitutions, and the con-
tinuation represents where evaluation is with respect to decompos-
ing and re-plugging a context. The state space is in Figure 1. The
standard CESK machine has a store that maps freshly allocated ad-
dresses to single values. An address a is “fresh” if a ∉ dom(σ), but
this is just a specification, not an implementation. Concretely, there
is an allocation function alloc ∶ CESK → Addr that will produce
an address for the machine to use. We use a slightly non-standard
CESK machine that allows alloc to produce arbitrary addresses in-
stead of just fresh ones.

Allocation is key for both precision and abstraction power.
Fresh allocation gives us the full lambda calculus – everything
is undecidable. If the allocator has a finite codomain, and there
are no recursive datatypes in a state’s representation, then the state
space is finite – the machine is a finite state machine. If the allo-
cator freshly allocates addresses for the stack representation, but is
finite for everything else, the semantics is indistinguishable from
just using the recursive representation of the stack. If we have just
the stack as an unbounded data structure, then the machine has
finitely many stack frames and finitely many other components of
the state – the machine is a pushdown system.

AAM slightly modifies the store to map arbitrarily allocated ad-
dresses (reuse allowed) to a set of values. That way, if an address
is reused then the previous tenant of the address is not forgotten,
just merged as a possible result when the address is dereferenced.
The allocation function is a parameter; the “machine” AAM pro-
duces is really a machine schema, since we can vary the allocator
to produce both and anything in between a concrete and abstract
semantics. That said, we will still refer to the refactored seman-
tics as machines going forward. The semantics of this CESK ma-
chine is shown in Figure 2. The only differences from the standard

1 http://github.com/dvanhorn/aac
2 CESK stands for control string (or code), environment, store, and con-
tinuation (but with a k to distinguish from the first c). The continuation is
sometimes called the stack.

ς ∈ CESK ∶∶= ⟨e, ρ, σ, κ⟩
` ∈ Lam ∶∶= λx.e v ∈ Value ∶∶= (`, ρ)
ρ ∈ Env = Var ⇀Addr σ ∈ Store = Addr ⇀℘(Value)

φ ∈ Frame ∶∶= appL(e, ρ) ∣ appR(v)
κ ∈ Kont = Frame∗

x ∈ Var a set a, b ∈ Addr a set
alloc ∶ CESK → Addr

Figure 1. CESK semantic spaces

ς z→ ς ′ a = alloc(ς)
⟨x, ρ, σ, κ⟩ ⟨v, σ, κ⟩ if v ∈ σ(ρ(x))

⟨(e0 e1), ρ, σ, κ⟩ ⟨e0, ρ, σ,appL(e1, ρ) ∶κ⟩
⟨v, σ,appL(e, ρ)∶κ⟩ ⟨e, ρ, σ,appR(v)∶κ⟩

⟨v, σ,appR(λx.e, ρ)∶κ⟩ ⟨e, ρ[x↦ a], σ ⊔ [a↦ v], κ⟩

Figure 2. CESK machine

ς̂ ∈ ĈESK t ∶∶= ⟨e, ρ, σ̂, κ̂⟩t
σ̂ ∈ Ŝtore = Addr → ℘(Storeable) κ̂ ∈ K̂ont ∶∶= ε ∣ φ∶a

t, u ∈ Time Storeable ∶∶= κ̂ ∣ v

Figure 3. CESK ∗
t semantic spaces

presentation are in the use of ∈ instead of = to make lookups non-
deterministic, and weak updates with ⊔ instead of strong updates to
allow sound reuse of addresses:

σ ⊔ [a↦ v] = σ[a↦ σ(a) ⊔ v]
v ⊔ v′ = {v, v′}

{v, . . .} ⊔ v′ = {v, . . . , v′}

Removing recursion: In order to make z→ finite and therefore
have a computable graph, we must finitize the recursive spaces in
which the machine creates new values. AAM dictates that finiti-
zation can be centralized to one place, address allocation, by redi-
recting values in recursive positions through the store. Expressions,
though recursive, do not need this step because they are only de-
structed. The Expr space is finite for each program, the size of
which is the number of subexpressions in the program.

The runaway recursion is in Kont : the tail of the continuation
cons is recursive. So then conses of frames in Kont instead al-
locate an address, update the heap with the recursive value, and
use the address in place of the recursive value. To help an alloc ∶
State → Addr function choose its addresses, the state space can be
extended with an arbitrary pointed space that can be updated each
step. The original AAM paper calls this pointed space and update
function (Time, t0) and tick respectively. The point, t0, is for the
initial state’s timestamp. Later work on widening [15] suggests less
arbitrary constructions, and to think of Time as a space of abstract
traces, though the “abstraction” need not be sound [23]. The times-
tamp machinery is important to implementing specific allocation
schemes, but is primarily noise for the exposition in this paper, so
we omit it past the first couple demonstrations.

The new semantic spaces in Figure 3 form the CESK ∗
t ma-

chine. The semantics of this machine follow the weak update and
non-deterministic lookup principles of AAM in Figure 4.

If we run the CESK ∗
t semantics to explore all possible states,

we get a sound approximation of all paths that the CESK machine
will explore. This paper will give a more focused view of the
Kont component. We said that when just Kont is unbounded,
we have a pushdown system. Pushdown systems cannot be naively
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ς̂ z→ ς̂ ′ a = alloc(ς̂) u = tick(ς̂)
⟨x, ρ, σ̂, κ̂⟩t ⟨v, σ̂, κ̂⟩u if v ∈ σ(ρ(x))

⟨(e0 e1), ρ, σ̂, κ̂⟩t ⟨e0, ρ, σ̂
′,appL(e1, ρ)∶a⟩u

where σ̂′ = σ̂ ⊔ [a↦ κ̂]
⟨v, ρ, σ̂,appL(e, ρ′)∶b⟩t ⟨e, ρ′, σ̂,appR(v, ρ)∶b⟩u
⟨v, σ̂,appR(λx.e, ρ)∶b⟩t ⟨e, ρ′, σ̂′, κ̂⟩u if κ̂ ∈ σ̂(b)

where ρ′ = ρ[x↦ a]
σ̂′ = σ̂ ⊔ [a↦ v]

Figure 4. CESK ∗
t semantics

run to find all states and describe all paths the CESK machine
can explore; the state space is infinite, therefore this strategy may
not terminate. The pushdown limitation is special because we can
always recognize non-termination, stop, and describe the entire
state space. We show that a simple change in state representation
can provide this functionality. We regain the ability to just run the
semantics and get a finite object that describes all possible paths in
the CESK machine, but with better precision than before.

3. A refinement for exact stacks
We can exactly represent the stack in the CESK ∗

t machine with
a modified allocation scheme for stacks. The key idea is that if
the address is “precise enough,” then every path that leads to the
allocation will proceed exactly the same way until the address is
dereferenced.

“Precise enough”: For the CESK ∗
t machine, every function

evaluates the same way, regardless of the stack. We should then
represent the stack addresses as the components of a function call.
The one place in the CESK ∗

t machine that continuations are allo-
cated is at (e0 e1) evaluation. The expression itself, the environ-
ment, the store and the timestamp are necessary components for
evaluating (e0 e1), so then we just represent the stack address as
those four things. The stack is not relevant for its evaluation, so we
do not want to store the stack addresses in the same store – that
would also lead to a recursive heap structure. We will call this new
table Ξ, because it looks like a stack.

By not storing the continuations in the value store, we separate
“relevant” components from “irrelevant” components. We split the
stack store from the value store and use only the value store in stack
addresses. Stack addresses generally describe the relevant context
that lead to their allocation, so we will refer to them henceforth as
contexts. The resulting state space is updated here:

Ŝtate = ĈESK t ×KStore

Storeable = Value

κ ∈ Kont ∶∶= ε ∣ φ∶τ
τ ∈ Context ∶∶= ⟨e, ρ, σ⟩t
Ξ ∈ KStore = Context⇀℘(Kont)

The semantics is modified slightly in Figure 5 to use Ξ instead
of σ for continuation allocation and lookup. Given finite allocation,
contexts are drawn from a finite space, but are still precise enough
to describe an unbounded stack: they hold all the relevant compo-
nents to find which stacks are possible. The computedz→ relation
thus represents the full description of a pushdown system of reach-
able states (and the set of paths). Of course this semantics does
not always define a pushdown system since alloc can have an un-
bounded codomain. The correctness claim is therefore a correspon-
dence between the same machine but with an unbounded stack, no
Ξ, and alloc, tick functions that behave the same disregarding the
different representations (a reasonable assumption).

ς̂ ,Ξz→ ς̂ ′,Ξ′ a = alloc(ς̂ ,Ξ) u = tick(ς̂ ,Ξ)
⟨x, ρ, σ, κ̂⟩t,Ξ ⟨v, σ, κ̂⟩u,Ξ if v ∈ σ(ρ(x))

⟨(e0 e1), ρ, σ, κ̂⟩t,Ξ ⟨e0, ρ, σ,appL(e1, ρ)∶τ⟩u,Ξ′

where τ = ⟨(e0 e1), ρ, σ⟩t
Ξ′ = Ξ ⊔ [τ ↦ κ̂]

⟨v, σ,appL(e, ρ′)∶τ⟩t,Ξ ⟨e, ρ′, σ,appR(v)∶τ⟩u,Ξ
⟨v, ρ, σ,appR(λx.e, ρ′)∶τ⟩t,Ξ ⟨e, ρ′′, σ′, κ̂⟩u,Ξ if κ̂ ∈ Ξ(τ)

where ρ′′ = ρ′[x↦ a]
σ′ = σ ⊔ [a↦ v]

Figure 5. CESK ∗
t Ξ semantics

3.1 Correctness
The high level argument for correctness exploits properties of both
machines. Where the stack is unbounded (call this CESKt ), if
every state in a trace shares a common tail in their continuations,
that tail is irrelevant. This means the tail can be replaced with
anything and still produce a valid trace. We call this property more
generally, “context irrelevance.” The CESK ∗

t Ξ machine maintains
an invariant on Ξ that says that κ̂ ∈ Ξ(τ) represents a trace in
CESKt that starts at the base of κ̂ and reaches τ with κ̂ on top.
We can use this invariant and context irrelevance to translate steps
in the CESK ∗

t Ξ machine into steps in CESKt . The other way
around, we use a proposition that a full stack is represented by Ξ
via unrolling and follow a simple simulation argument.

The common tail proposition we will call ht and the replace-
ment function we will call rt ; they both have obvious inductive
and recursive definitions respectively. The invariant is stated with
respect to the entire program, epgm :

invΞ(�)

invΞ(Ξ)
∀κ̂c ∈K.base(κ̂c)z→∗

CESKt
⟨ec, ρc, σc, κc++ε⟩tc

invΞ(Ξ[⟨ec, ρc, σc⟩tc ↦K])

base(κ̂)z→∗
CESKt

⟨e, ρ, σ, κ̂++ε⟩t invΞ(Ξ)
inv(⟨e, ρ, σ, κ̂⟩t,Ξ)

where

base(ε) = ⟨epgm ,�,�, ε⟩t0
base(φ∶⟨ec, ρc, σc⟩tc) = ⟨ec, ρc, σc, ε⟩tc

We use ⋅++ε to treat τ like ε and construct a continuation in Kont
rather than K̂ont .

Lemma 1 (Context irrelevance). For all traces π ∈ CESKt
∗ and

continuations κ such that ht(π,κ), for any κ′, rt(π,κ, κ′) is a
valid trace.

Proof. Simple induction on π and cases onz→CESKt .

Lemma 2 (CESK ∗
t Ξ Invariant). For all ς, ς ′ ∈ Ŝtate , if inv(ς)

and ς z→ ς ′, then inv(ς ′)

Proof. Routine case analysis.

Note that the injection of epgm into CESK ∗
t Ξ , (⟨epgm ,�,�, ε⟩t0 ,�),

trivially satisfies inv .
The unrolling proposition is the following

ε ∈ unrollΞ(ε)
κ̂ ∈ Ξ(τ), κ ∈ unrollΞ(κ̂)
φ∶κ ∈ unrollΞ(φ∶τ)

Theorem 3 (Correctness). For all expressions epgm ,

• Soundness: if ς z→CESKt ς ′, inv(ς{κ ∶= κ̂},Ξ), and
κ ∈ unrollΞ(κ̂), then there are Ξ′, κ̂′ such that ς{κ ∶=
κ̂},Ξz→CESK∗t Ξ ς ′{κ ∶= κ̂′},Ξ′ and κ′ ∈ unrollΞ′(κ̂′)
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ς̂ ∈ ĈESIK = ⟨e, ρ, σ, ι, κ̂⟩ ι ∈ LKont = Frame∗

κ̂ ∈ Kont ∶∶= ε ∣ τ

Figure 6. CESIK ∗Ξ semantic spaces

• Completeness: if ς̂ ,Ξ z→CESK∗t Ξ ς̂ ′,Ξ′ and inv(ς̂ ,Ξ), for
all κ, if κ ∈ unrollΞ(ς̂ .κ̂) then there is a κ′ such that ς̂{κ̂ ∶=
κ}z→CESKt ς̂

′{κ̂ ∶= κ′} and κ′ ∈ unrollΞ(ς̂ ′.κ̂).

3.2 Engineered semantics for efficiency
We cover three optimizations that may be employed to accelerate
the fixed-point computation.

1. Observe that Ξ can be made global with no loss in precision; it
will not need to be stored in the frontier or set of seen states.

2. Continuations can be “chunked” more coarsely at function
boundaries instead of at each frame in order to minimize ta-
ble lookups.

3. Since evaluation is the same regardless of the stack, we can
memoize results to short-circuit to the answer.

This last optimization will be covered in more detail in section 6.
From here on, this paper will not explicitly mention timestamps.

A secondary motivation for the representation change in 2 is that
flow analyses commonly split control-flow graphs at function call
boundaries to enable the combination of intra- and inter-procedural
analyses. In an abstract machine, this split looks like installing a
continuation prompt at function calls. We borrow a representation
from literature on delimited continuations [2] to split the continua-
tion into two components: the continuation and meta-continuation.
Our delimiters are special since each continuation “chunk” until the
next prompt has bounded length. The bound is roughly the deep-
est nesting depth of an expression in functions’ bodies. Instead of
“continuation” and “meta-continuation” then, we will use terminol-
ogy from CFA2 and call the top chunk a “local continuation,” and
the rest the “continuation.”3

The resulting shuffling of the semantics to accommodate this
new representation is in Figure 7. The extension to Ξ happens in a
different rule – function entry – so the shape of the context changes
to hold the function, argument, and store. We have a choice of
whether to introduce an administrative step to dereference Ξ once
ι is empty, or to use a helper metafunction to describe a “pop” of
both ι and κ. Suppose we choose the second because the resulting
semantics has a 1-to-1 correspondence with the previous semantics.
A first attempt might land us here:

pop(φ∶ι, κ̂,Ξ) = {(φ, ι, κ̂)}
pop(ε, τ,Ξ) = {(φ, ι, κ̂) ∶ (φ∶ι, κ̂) ∈ Ξ(τ)}

However, tail calls make the dereferenced τ lead to (ε, τ ′). Because
abstraction makes the store grow monotonically in a finite space,
it’s possible that τ ′ = τ and a naive recursive definition of pop
will diverge chasing these contexts. Now pop must save all the
contexts it dereferences in order to guard against divergence. So

3 Since the continuation is either ε or a context, CFA2 calls these “entries”
to mean execution entry into the program (ε) or a function (τ ). One can also
understand these as entries in a table (Ξ). We stay with the “continuation”
nomenclature because they represent full continuations.

ς̂ ,Ξz→ ς̂ ′,Ξ′ a = alloc(ς̂ ,Ξ)
⟨x, ρ, σ, ι, κ̂⟩,Ξ ⟨v, σ, ι, κ̂⟩,Ξ if v ∈ σ(ρ(x))

⟨(e0 e1), ρ, σ, ι, κ̂⟩,Ξ ⟨e0, ρ, σ,appL(e1, ρ)∶ι, κ̂⟩,Ξ
⟨v, σ, ι, κ̂⟩,Ξ ⟨e, ρ′, σ,appR(v, ρ)∶ι′, κ̂′⟩,Ξ

if appL(e, ρ′), ι′, κ̂′ ∈ pop(ι, κ̂,Ξ)
⟨v, σ, ι, κ̂⟩,Ξ ⟨e, ρ[x↦ a], σ′, ε, τ⟩,Ξ′

if appR(λx.e, ρ), ι′, κ̂′ ∈ pop(ι, κ̂,Ξ)
where σ′ = σ ⊔ [a↦ v]

τ = (⟨λx.e, ρ⟩, v, σ)
Ξ′ = Ξ ⊔ [τ ↦ (ι, κ̂)]

Figure 7. CESIK ∗Ξ semantics

pop(ι, κ̂,Ξ) = pop∗(ι, κ̂,Ξ,∅) where

pop∗(ε, ε,Ξ,G) = ∅
pop∗(φ∶ι, κ̂,Ξ,G) = {(φ, ι, κ̂)}

pop∗(ε, τ,Ξ,G) = {(φ, ι, κ̂) ∶ (φ∶ι, κ̂) ∈ Ξ(τ)}
∪ ⋃
τ ′∈G′

pop∗(ε, τ ′,Ξ,G ∪G′)

where G′ = {τ ′ ∶ (ε, τ ′) ∈ Ξ(τ)} ∖G
In practice, one would not expect G to grow very large. Had

we chosen the first strategy, the issue of divergence is delegated to
the machinery from the fixed-point computation.4 However, when
adding the administrative state, the “seen” check requires searching
a far larger set than we would expect G to be.

Fe(S,R,F,Ξ) = (S ∪ F,R ∪R′, F ′ ∖ S,Ξ′)
I = ⋃

s=(ς̂,σ)∈F
{(⟨ς̂ , ς̂ ′⟩,Ξ′) ∶ ς̂ ,Ξz→ ς̂ ′,Ξ′}

R′ = π0I F ′ = π1R
′ Ξ′ =⊔π1I

For a program e, we will say (∅,∅,{⟨e,�,�, ε, ε⟩},�) is the bot-
tom element of Fe’s domain. The “analysis” then is then the pair
of the R and Ξ components of lfp(Fe).

Correctness The correctness argument for this semantics is not
about single steps but instead about the entire relation that F com-
putes. The argument is that the R and Ξ components of the system
represent a slice of the unbounded relation z→CESK (restricted to
reachable states). We will show that traces in any n ∈ N times
we unfold z→CESK from the initial state, there is a correspond-
ing m applications of F that reify into a relation that exhibit the
same trace. Conversely, any trace in the reification of Fme (�) has
the same trace in some n unfoldings of z→CESK . For an arbitrary
alloc function, we cannot expect F to have a fixed point, so this
property is the best we can get. For a finite alloc function, Kleene’s
fixed point theorem dictates there is a m such that Fme (�) is a
fixed point, so every trace in the reified relation is also a trace in
an unbounded number of unfoldings of z→CESK . This is the cor-
responding completeness argument for the algorithm.

unfold(ς0,z→,0) = {(ς0, ς) ∶ ς0 z→ ς}
unfold(ς0,z→, n + 1) = unfold1(unfold(ς0,z→, n))

where unfold1(R) = R ∪ {(ς, ς ′) ∶ ( , ς) ∈ R, ς z→ ς ′}
The reification simply realizes all possible complete continuations
that a state could have, given Ξ:

⟨⟨e, ρ, σ, κ̂⟩, ⟨e′, ρ′, σ′, κ̂′⟩⟩ ∈ R κ ∈ tailsΞ(κ̂)
⟨e, ρ, σ, κ̂++κ⟩z→reify(S,R,F,Ξ) ⟨e′, ρ′, σ′κ̂′++κ⟩

4 CFA2 employs the first strategy and calls it “transitive summaries.”
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The additional judgment about tails is a variant of unroll in order
to get a common tail:

ε ∈ tailsΞ(ε)
κ̂ ∈ Ξ(τ) κ ∈ unrollΞ(κ̂)

κ ∈ tailsΞ(φ∶τ)

Theorem 4 (Correctness). For all e0, let ς0 = ⟨e0,�,�, ε⟩ in
∀n ∈ N, ς, ς ′ ∈ CESK :

• if (ς, ς ′) ∈ unfold(ς0,z→CESK , n) then there is an m such
that ς z→reify(Fme0 (�))

ς ′

• if ς z→reify(Fne0 (�))
ς ′ then there is an m such that (ς, ς ′) ∈

unfold(ς0,z→CESK ,m)

Proof. By induction on n.

3.3 Remarks about complexity
The common tradeoff for performance over precision is to use a
global store. A representation win originally exploited by Shiv-
ers [? ] is to represent the seen states’ stores by the age of the
store. A context in this case contains the store age for faster com-
parison. Old stores are mostly useless, so a useful representation
for the seen set is as a map from the rest of the state to the store
age. We will align with the analysis literature and call these “rest
of state” objects, points. Note that since the store age becomes part
of the state representation due to “context,” there are considerably
more points than in the comparable finite state approach. When we
revisit a state because the store age is different from the last time
we visited it (hence we’re visiting a new state), we can clobber
the old store age. A finite state approach may use less memory be-
cause the seen set will have a smaller domain (fewer distinctions
made because of the lack of a “context” component), but it does
not necessarily take less time. In our evaluation, we instead saw
that although point counts were higher, visited states were lower in
the pushdown setting.

Theoretically the state space is bigger, but in practice The store
age as part of the state representation can increase the state space
considerably. While this can indeed increase analysis time, There
are two separate concepts that must be addressed when we see a
spike in our metrics. We modified this approach to lessen the num-
ber of times the age must be updated to reduce the necessary propa-
gations in our paper about optimizing abstract abstract machines [?
]. More information about optimizing representations

4. Stack inspection and recursive metafunctions
Since we just showed how to produce a pushdown system from
an abstract machine, some readers may be concerned that we have
lost the ability to reason about the stack as a whole. This is not the
case. The semantics may still refer to Ξ to make judgments about
the possible stacks that can be realized at each state. The key is
to interpret the functions making these judgments again with the
AAM methodology.

Some semantic features allow a language to inspect some arbi-
trarily deep part of the stack, or compute a property of the whole
stack before continuing. Java’s access control security features are
an example of the first form of inspection, and garbage collection
is an example of the second. We will demonstrate both forms are
simple first-order metafunctions that the AAM methodology will
soundly interpret. Access control can be modeled with continua-
tion marks, so we demonstrate with the CM machine of Clements
and Felleisen.

Semantics that inspect the stack do so with metafunction calls
that recur down the stack. Recursive metafunctions have a seman-
tics as well, hence fair game for AAM. And, they should always
terminate (otherwise the semantics is hosed). We can think of a

simple pattern-matching recursive function as a set of rewrite rules
that apply repeatedly until it reaches a result. Interpreted via AAM,
non-deterministic metafunction evaluation leads to a set of possible
results.

The finite restriction on the state space carries over to metafunc-
tion inputs, so we can always detect infinite loops that abstraction
may have introduced and bail out of that execution path. Specifi-
cally, a metafunction call can be seen as an initial state, s, that will
evaluate through the metafunction’s rewrite rules z→ to compute
all terminal states (outputs):

terminal ∶ ∀A.relation A ×A→ ℘(A)
terminal(z→, s) = terminal∗(∅,{s},∅)

where terminal∗(S,∅, T ) = T
terminal∗(S,F,T ) = terminal∗(S ∪ F,F ′, T ∪ T ′)

where T ′ = ⋃
s∈F

post(s) ?=∅→ {s},∅

F ′ = ⋃
s∈F

post(s) ∖ S

post(s) = {s′ ∶ sz→ s′}

This definition is a typical worklist algorithm. It builds the set
of terminal terms, T , by exploring the frontier (or worklist), F ,
and only adding terms to the frontier that have not been seen, as
represented by S. If s has no more steps, post(s) will be empty,
meaning s should be added to the terminal set T . We prove a
correctness condition that allows us to reason equationally with
terminal later on:

Lemma 5 (terminal∗ correct). Fix z→. Constrain arbitrary
S,F,T such that T ⊑ S and ∀s ∈ T,post(s) = ∅, F ∩ S = ∅, and
for all s ∈ S, post(s) ⊆ S ∪ F .

• Soundness: for all s ∈ S ∪ F , if s z→∗ st and post(st) = ∅
then st ∈ terminal∗(S,F,T ).

• Completeness: for all s ∈ terminal∗(S,F,T ) there is an
s0 ∈ S ∪ F such that s0 z→∗ s and post(s) = ∅.

Proof. By induction on terminal∗’s recursion scheme.

Note that it is possible for metafunctions’ rewrite rules to them-
selves use metafunctions, but the seen set (S) for terminal must be
dynamically bound5 – it cannot restart at ∅ upon reentry. Without
this precaution, the host language will exceed its stack limits when
an infinite path is explored, rather than bail out.

4.1 Case study for stack traversal: GC
Garbage collection is an example of a language feature that needs to
crawl the stack, specifically to find live addresses. We are interested
in garbage collection because it can give massive precision boosts
to analyses [11, 24]. The following function will produce the set of
live addresses in the stack:

KLL ∶ Frame∗ → ℘(Addr)
KLL(κ̂) =KLL∗(κ̂,∅)

KLL∗(ε,L) = L
KLL∗(φ∶κ̂, L) =KLL∗(κ̂, L ∪ T (φ))

where T (appL(e, ρ)) = T (appR(e, ρ)) = T (e, ρ)
T (e, ρ) = {ρ(x) ∶ x ∈ fv(e)}

5 This is a reference to dynamic scope as opposed to lexical scope.
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When interpreted via AAM, the continuation is indirected
through Ξ and leads to multiple results, and possibly loops through
Ξ. Thus this is more properly understood as

KLL(Ξ, κ̂) = terminal(z→,KLL∗(Ξ, κ̂,∅))

KLL∗(Ξ, ε,L)z→ L

KLL∗(Ξ, φ∶τ,L)z→KLL∗(Ξ, κ̂, L ∪ T (φ)) if κ̂ ∈ Ξ(τ)
A garbage collecting semantics can choose to collect the heap

with respect to each live set (call this Γ∗), or, soundly, collect with
respect to their union (call this Γ̂).6 On the one hand we could have
tighter collections but more possible states, and on the other hand
we can leave some precision behind in the hope that the state space
will be smaller. In the general idea of relevance versus irrelevance,
the continuation’s live addresses are relevant to execution, but are
already implicitly represented in contexts because they must be
mapped in the store’s domain.

A state is “collected” only if live addresses remain in the domain
of σ. We say a value v ∈ σ(a) is live if a is live. If a value is live, any
addresses it touches are live; this is captured by the computation in
R:

R(root , σ) = {b ∶ a ∈ root , a↝∗
σ b}

v ∈ σ(a) b ∈ T (v)
a↝σ b

So the two collection methods are as follows. Exact GC produces
different collected states based on the possible stacks’ live ad-
dresses:7

Γ∗(ς̂ ,Ξ) = {ς̂{σ ∶= ς̂ .σ∣L} ∶ L ∈ live∗(ς̂ ,Ξ)}
live∗(⟨e, ρ, σ, κ̂⟩,Ξ) = {R(T (e, ρ) ∪L,σ) ∶ L ∈KLL(Ξ, κ̂)}

ς̂ ,Ξz→ ς̂ ′,Ξ′ ς̂ ′ ∈ Γ∗(ς ′,Ξ′)
ς̂ ,Ξz→Γ∗ ς̂

′,Ξ

And inexact GC produces a single state that collects based on all
(known) stacks’ live addresses:

Γ̂(ς̂ ,Ξ) = ς̂{σ ∶= ς̂ .σ∣l̂ive(ς̂,Ξ)}

l̂ive(⟨e, ρ, σ, κ̂⟩,Ξ) =R(T (e, ρ) ∪⋃KLL(Ξ, κ̂), σ)

ς̂ ,Ξz→ ς̂ ′,Ξ′

ς̂ ,Ξz→Γ̂ Γ̂(ς ′,Ξ′)Ξ′

Without the continuation store, the baseline GC is

Γ(ς̂) = ς̂{σ ∶= ς̂ .σ∣live(ς̂)}
live(e, ρ, σ, κ) =R(T (e, ρ) ∪KLL(κ̂), σ)

ς̂ z→ ς̂ ′

ς̂ z→Γ Γ(ς ′)
Suppose at arbitrary times we decide to perform garbage collection
rather than continue with garbage. So when ς̂ z→ ς̂ ′, we instead do
ς̂ z→Γ ς̂

′. The times we perform GC do not matter for soundness,
since we are not analyzing GC behavior. However, garbage stands
in the way of completeness. Mismatches in the GC application
for the different semantics lead to mismatches in resulting state
spaces, not just up to garbage in stores, but in spurious paths from
dereferencing a reallocated address that was not first collected.

6 The garbage collecting version of PDCFA [17] evaluates the Γ̂ strategy.
7 It is possible and more efficient to build the stack’s live addresses piece-
meal as an additional component of each state, precluding the need for
KLL. Each stack in Ξ would also store the live addresses to restore on
pop.

The state space compaction that continuation stores give us
makes ensuring GC times match up for the completeness proposi-
tion tedious. Our statement of completeness then will assume both
semantics perform garbage collection on every step.

Lemma 6 (Correctness of KLL). For all Ξ, κ, κ̂, L,

• Soundness: if κ ∈ unrollΞ(κ̂) thenKLL∗(κ,L) ∈ terminal(z→
,KLL∗(Ξ, κ̂, L))

• Completeness: for all L′ ∈ KLL∗(Ξ, κ̂, L) there is a κ ∈
unrollΞ(κ̂) such that L′ =KLL∗(κ,L).

Proof. Soundness follows by induction on the unrolling. Com-
pleteness follows by induction on the trace from completeness in
Lemma 5.

Theorem 7 (Correctness of Γ∗CESK ∗
t Ξ ). For all expressions e0,

• Soundness: if ς z→ΓCESKt ς ′, inv(ς{κ ∶= κ̂},Ξ), and
ς.κ ∈ unrollΞ(κ̂), then there are Ξ′, κ̂′, σ′ such that ς{κ ∶=
κ̂},Ξ z→Γ∗CESK∗t Ξ ς̂ ′,Ξ′ where ς̂ ′ = ς ′{κ ∶= κ̂′, σ ∶= σ′} and
ς ′.κ ∈ unrollΞ′(κ̂′) and finally there is an L ∈ live∗(ς̂ ′,Ξ′)
such that σ′∣L = ς ′.σ∣live(ς′)

• Completeness: if ς̂ ≡ ⟨e, ρ, σ, κ̂⟩,Ξ z→Γ∗CESK∗t Ξ ς̂ ′,Ξ′ and
there is an Lκ ∈ KLL(Ξ, κ̂) such that σ∣L = σ (where L =
R(T (e, ρ) ∪ Lκ, σ)) and inv(ς̂ ,Ξ), for all κ ∈ unrollΞ(κ̂)
such that KLL(κ) = Lκ, there is a κ′ such that ς̂{κ̂ ∶=
κ}z→ΓCESKt ς̂

′{κ̂ ∶= κ′} (a GC step) and κ′ ∈ unrollΞ(ς̂ ′.κ̂)

Theorem 8 (Soundness of Γ̂CESK ∗
t Ξ ). For all expressions e0, if

ς z→ΓCESKt ς
′, inv(ς{κ ∶= κ̂},Ξ), and ς.κ ∈ unrollΞ(κ̂), then

there are Ξ′, κ̂′, σ′′ such that ς{κ ∶= κ̂},Ξ z→Γ̂CESK∗t Ξ ς̂ ′,Ξ′

where ς̂ ′ = ς ′{κ ∶= κ̂′, σ ∶= σ′′} and ς ′.κ ∈ unrollΞ′(κ̂′) and
finally ς ′.σ∣live(ς′) ⊑ σ′′∣l̂ive(ς̂′,Ξ′)

The proofs are straightforward, and use the usual lemmas for
GC, such as idempotence of Γ and T ⊆R.

4.2 Case study analyzing security features: the CM machine
The CM machine provides a model of access control: a dynamic
branch of execution is given permission to use some resource if
a continuation mark for that permission is set to “grant.” There
are three new forms we add to the lambda calculus to model this
feature: grant, frame, and test. The grant construct adds a
permission to the stack. The concern of unforgeable permissions is
orthogonal, so we simplify with a set of permissions that is textually
present in the program:

P ∈ Permissions a set
Expr ∶∶= . . . ∣ grant P e ∣ frame P e ∣ test P e e

The frame construct ensures that only a given set of permissions
are allowed, but not necessarily granted. The security is in the
semantics of test: we can test if all marks in some set P have
been granted in the stack without first being denied; this involves
crawling the stack:

OK(∅, κ) = True

OK(P, εm) = pass?(P,m)
OK(P,φ∶mκ) = pass?(P,m) and OK(P ∖m−1(Grant), κ)

where pass?(P,m) = P ∩m−1(Deny) ?=∅
The set subtraction is to say that granted permissions do not need
to be checked farther down the stack.

Continuation marks respect tail calls and have an interface that
abstracts over the stack implementation. Each stack frame added to
the continuation carries the permission map. The empty continua-
tion also carries a permission map. Crucially, the added constructs
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⟨grant P e, ρ, σ, κ⟩ ⟨e, ρ, σ, κ[P ↦Grant]⟩
⟨frame P e, ρ, σ, κ⟩ ⟨e, ρ, σ, κ[P ↦Deny]⟩

⟨test P e0 e1, ρ, σ, κ⟩ ⟨e0, ρ, σ, κ⟩ if True = OK(P,κ)
⟨e1, ρ, σ, κ⟩ if False = OK(P,κ)

Figure 8. CM machine semantics

do not add frames to the stack; instead, they update the permission
map in the top frame, or if empty, the empty continuation’s permis-
sion map.

m ∈ PermissionMap = Permissions⇀GD

gd ∈ GD ∶∶=Grant ∣ Deny

κ ∈ Kont ∶∶= εm ∣ φ∶mκ
Update for continuation marks:

m[P ↦ gd] = λx.x
?
∈P → gd ,m(x)

m[P ↦ gd] = λx.x
?
∈P →m(x), gd

The abstract version of the semantics has one change on top of
the usual continuation store. The test rules are now

⟨test P e0 e1, ρ, σ, κ̂⟩,Ξz→ ⟨e0, ρ, σ, κ̂⟩,Ξ if True ∈ ÔK(Ξ, P, κ̂)
z→ ⟨e1, ρ, σ, κ̂⟩,Ξ if False ∈ ÔK(Ξ, P, κ̂)

where the a new ÔK function uses terminal and rewrite rules:

ÔK(Ξ, P, κ̂) = terminal(z→, ÔK∗(Ξ, P, κ̂))

ÔK∗(Ξ,∅, κ̂)z→ True

ÔK∗(Ξ, P, εm)z→ pass?(P,m)

ÔK∗(Ξ, P, φ∶mτ)z→ b where
b ∈ {pass?(P,m) and b ∶ κ̂ ∈ Ξ(τ),

b ∈ ÔK(Ξ, P ∖m−1(Grant), κ̂))}
This definition works fine with the reentrant terminal function
with a dynamically bound seen set, but otherwise needs to be
rewritten to accumulate the Boolean result as a parameter of ÔK

∗
.

We use the accumulator version in the proof for simplicity.

Lemma 9 (Correctness of ÔK). For all Ξ, P, κ, κ̂,

• Soundness: if κ ∈ unrollΞ(κ̂) thenOK(P,κ) ∈ ÔK(Ξ, P, κ̂).
• Completeness: if b ∈ ÔK(Ξ, P, κ̂) then there is a κ ∈ unrollΞ(κ̂)

such that b = OK(P,κ).

With this lemma in hand, the correctness proof is almost identi-
cal to the core proof of correctness.

Theorem 10 (Correctness). The abstract semantics is sound and
complete in the same sense as Theorem 3.

5. Relaxing contexts for delimited continuations
In section 3 we showed how to get a pushdown abstraction by sep-
arating continuations from the heap that stores values. This sepa-
ration breaks down when continuations themselves become values
via first-class control operators. The glaring issue is that continua-
tions become “storeable” and relevant to the execution of functions.
But, it was precisely the irrelevance that allowed the separation of σ
and Ξ. Specifically, the store components of continuations become
elements of the store’s codomain — a recursion that can lead to
an unbounded state space and therefore a non-terminating analysis.
We apply the AAM methodology to cut out the recursion; when-
ever a continuation is captured to go into the store, we allocate an
address to approximate the store component of the continuation.

ς z→SR ς ′

ev(reset e, ρ, σ, κ,C) ev(e, ρ, σ, ε, κ ○C)
co(ε, κ ○C, v, σ) co(κ,C, v, σ)

ev(shift x.e, ρ, σ, κ,C) ev(e, ρ[x↦ a], σ′, ε,C)
where σ′ = σ ⊔ [a↦ comp(κ)]

co(fn(comp(κ′))∶κ,C, v, σ) co(κ′, κ ○C, v, σ)

Figure 9. Machine semantics for shift/reset

We introduce a new environment, χ, that maps these addresses
to the stores they represent. The stores that contain addresses in χ
are then open, and must be paired with χ to be closed. This poses
the same problem as before with contexts in storeable continua-
tions. Therefore, we give up some precision to regain termination
by flattening these environments when we capture continuations.
Fresh allocation still maintains the concrete semantics, but we nec-
essarily lose some ability to distinguish contexts in the abstract.

5.1 Case study of first-class control: shift and reset
We choose to study shift and reset [9] because delimited con-
tinuations have proven useful for implementing web servers [22,
27], providing processes isolation in operating systems [21], repre-
senting computational effects [13], modularly implementing error-
correcting parsers [32], and finally undelimited continuations are
passé for good reason [20]. Even with all their uses, however, their
semantics can yield control-flow possibilities that surprise their
users. A precise static analysis that illuminates their behavior is
then a valuable tool.

Our concrete test subject is the abstract machine for shift and re-
set adapted from Biernacki et al. [2] in the “eval, continue” style in
Figure 9. The figure elides the rules for standard function calls. The
new additions to the state space are a new kind of value, comp(κ),
and a meta-continuation, C ∈ MKont = Kont∗ for separating
continuations by their different prompts. Composable continua-
tions are indistinguishable from functions, so even though the meta-
continuation is concretely a list of continuations, its conses are no-
tated as function composition: κ ○C.

5.2 Reformulated with continuation stores
The machine in Figure 9 is transformed now to have three new
tables: one for continuations, one as discussed in the section begin-
ning to close stored continuations, and one for meta-continuations.
The first is like previous sections, albeit continuations may now
have the approximate form that is storeable. The meta-continuation
table is more like previous sections because meta-contexts are not
storeable. Meta-continuations do not have simple syntactic strate-
gies for bounding their size, so we choose to bound them to size
0. They could be paired with lists of K̂ont bounded at an arbitrary
n ∈ N, but we simplify for presentation.

Contexts for continuations are still at function application, but
now contain the χ. Contexts for meta-continuations are in two
places: manual prompt introduction via reset, or via continuation
invocation. At continuation capture time, continuation contexts are
approximated to remove σ̂ andχ components. The different context
spaces are thus:

τ̇ ∈ ExactContext ∶∶= ⟨e, ρ, σ̂, χ⟩
τ̂ ∈ Ĉontext ∶∶= ⟨e, ρ, a⟩
τ ∈ Context ∶∶= τ̂ ∣ τ̇

γ ∈ MContext ∶∶= ⟨e, ρ, σ̂, χ⟩ ∣ ⟨κ̃, v̂, σ̂, χ⟩

The approximation and flattening happens in A:

A ∶ KClosure ×Addr × K̂ont → KClosure × K̃ont
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ς̂ ∈ ŜR ∶∶= ev(e, ρ, σ̂, χ, κ̂, Ĉ) ∣ co(κ̂, Ĉ, v̂, σ̂, χ)
State ∶∶= ς̂ ,Ξκ̂,ΞĈ

χ ∈ KClosure = Addr ⇀℘(Store)
Ξκ̂ ∈ KStore = ExactContext⇀℘(K̂ont)
ΞĈ ∈ CStore = MContext⇀℘(K̂ont × M̂Kont)

κ̂ ∈ K̂ont ∶∶= ε ∣ φ∶τ ∣ τ κ̃ ∈ K̃ont ∶∶= ε ∣ τ̂
Ĉ ∈ M̂Kont ∶∶= ε ∣ γ v̂ ∈ V̂alue ∶∶= κ̃ ∣ (`, ρ)

Figure 10. Shift/reset abstract semantic spaces

A(χ, a, ε) = χ, ε
A(χ, a, φ∶τ) = χ′, φ∶τ̂ where (χ′, τ̂) = A(χ, a, τ)

A(χ, a, ⟨e, ρ, σ̂, χ′⟩) = χ ⊔ χ′ ⊔ [a↦ σ̂], φ∶⟨e, ρ, a⟩
A(χ, a, ⟨e, ρ, b⟩) = χ ⊔ [a↦ χ(b)], φ∶⟨e, ρ, a⟩

The third case is where continuation closures get flattened together.
The fourth case is when an already approximate continuation is
approximated: the approximation is inherited. Approximating the
context and allocating the continuation in the store require two
addresses, so we relax the specification of alloc to allow multiple
address allocations in this case.

Each of the four rules of the original shift/reset machine has
a corresponding rule that we explain piecemeal. We will use ⇢
for steps that do not modify the continuation stores for notational
brevity. We use the above A function in the rule for continuation
capture, as modified here.

ev(shift x.e, ρ, σ̂, χ, κ̂, Ĉ)⇢ ev(e, ρ′, σ̂′, χ′, ε, Ĉ)
where

(a, a′) = alloc(ς̂ ,Ξκ̂,ΞĈ) ρ′ = ρ[x↦ a]
(χ′, κ̃) = A(χ, a′, κ̂) σ̂′ = σ̂ ⊔ [a↦ κ̃]

The rule for reset stores the continuation and meta-continuation
in ΞĈ :

ev(reset e, ρ, σ̂, χ, κ̂, Ĉ),Ξκ̂,ΞĈ z→ ev(e, ρ, σ̂, χ, ε, γ),Ξκ̂,Ξ′
Ĉ

where γ = ⟨e, ρ, σ̂, χ⟩
ΞĈ = ΞĈ ⊔ [γ ↦ (κ̂, Ĉ)]

The prompt-popping rule simply dereferences ΞĈ :

co(ε, γ, v̂, σ̂, χ)⇢ co(κ̂, Ĉ, v̂, σ̂, χ) if (κ̂, Ĉ) ∈ ΞĈ(γ)
The continuation installation rule extends ΞĈ at the different

context:

co(κ̂, Ĉ, v̂, σ̂, χ),Ξκ̂,ΞĈ z→ co(κ̃, γ, v̂, σ̂, χ),Ξκ̂,Ξ′
Ĉ

if (appR(κ̃), κ̂′) ∈ pop(Ξκ̂, χ, κ̂)
where γ = ⟨κ̃, v̂, σ̂, χ⟩

ΞĈ = ΞĈ ⊔ [γ ↦ (κ̂′, Ĉ)]
Again we have a metafunction pop, but this time to interpret ap-
proximated continuations:

pop(Ξκ̂, χ, κ̂) = pop∗(κ̂,∅)
where pop∗(ε,G) = ∅

pop∗(φ∶τ,G) = {(φ, τ)}
pop∗(τ,G) = ⋃

κ̂∈G′
(pop∗(κ̂,G ∪G′))

where G′ = ⋃
τ̇∈I(τ)

Ξκ̂(τ̇) ∖G

I(τ̇) = {τ̇}
I(⟨e, ρ, a⟩) = {⟨e, ρ, σ̂, χ′⟩ ∈ dom(Ξκ̂) ∶ σ̂ ∈ χ(a), χ′ ⊑ χ}

Notice that since we flatten χs together, we need to compare for
containment rather than for equality (in I). A variant of this seman-
tics with GC is available in the PLT redex models.

Comparison to CPS transform to remove shift and reset: We
lose precision if we use a CPS transform to compile away shift
and reset forms, because variables are treated less precisely than
continuations. Consider the following program and its CPS trans-
form for comparison:
(let* ([id (λ (x) x)]

[f (λ (y) (shift k (k (k y))))]
[g (λ (z) (reset (id (f z))))])

(≤ (g 0) (g 1)))

(let* ([id (λ (x k) (k x))]
[f (λ (y j) (j (j y)))]
[g (λ (z h)

(h (f z (λ (fv)
(id fv (λ (i) i))))))])

(g 0 (λ (g0v) (g 1 (λ (g1v) (≤ g0v g1v))))))

The CESK ∗
t Ξ machine with a monovariant allocation strategy will

predict the CPS’d version returns true or false. In analysis litera-
ture, “monovariant” means variables get one address, namely them-
selves. Our specialized analysis for delimited control will predict
the non-CPS’d version returns true.

5.3 Correctness
We impose an order on values since stored continuations are more
approximate in the analysis than in SR:

v ⊑Ξ,χ v

κ ⊑ unrollΞ,χ(κ̃)
comp(κ) ⊑Ξ,χ κ̃

∀v ∈ σ(a).∃v̂ ∈ σ̂(a).v ⊑Ξ,χ v̂

σ ⊑Ξ,χ σ̂

κ ⊑ unrollΞκ̂,χ(κ̂)
C ⊑ unrollC Ξκ̂,ΞĈ ,χ

(Ĉ) σ ⊑Ξκ̂,χ σ̂

ev(e, ρ, σ, κ,C) ⊑ ev(e, ρ, σ̂, χ, κ̂, Ĉ),Ξκ̂,ΞĈ

v ⊑Ξκ̂,χ v̂ κ ⊑ unrollΞκ̂,χ(κ̂)
C ⊑ unrollC Ξκ̂,ΞĈ ,χ

(Ĉ) σ ⊑Ξκ̂,χ σ̂

co(κ,C, v, σ) ⊑ co(κ̂, Ĉ, v̂, σ̂, χ),Ξκ̂,ΞĈ
Unrolling differs from the previous sections because the values in
frames can be approximate. Thus, instead of expecting the exact
continuation to be in the unrolling, we have a judgment that an
unrolling approximates a given continuation in Figure 11 (note we
reuse I from pop∗’s definition).

Theorem 11 (Soundness). If ◊ z→SR ⧫, and ◊ ⊑ ◻ then there is
∎ such that ◻z→SRSχt ∎ and ⧫ ⊑ ∎.

Freshness implies completeness The high level proof idea is that
fresh allocation separates evaluation into a sequence of bounded
length paths that have the same store, but the store only grows and
distinguishes contexts such that each continuation and metacontin-
uation have a unique unrolling. It is an open question whether the
addition of garbage collection preserves completeness. Each con-
text with the same store will have different expressions in them
since expressions can only get smaller until a function call, at which
point the store grows. This forms an order on contexts: smaller store
means smaller context, and same store but smaller expression (in-
deed a subexpression) means a smaller context. Every entry in each
enviroment (σ̂, χ,Ξκ̂,ΞĈ ) will map to a unique element, and the
continuation stores will have no circular references (the context in
the tail of a continuation is strictly smaller than the context that
maps to the continuation). There can only be one context that I
maps to for approximate contexts because of the property of stores
in contexts.
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appL(e, ρ) ⊑Ξ,χ appL(e, ρ)
v ⊑Ξ,χ v̂

appR(v) ⊑Ξ,χ appR(v̂)

ε ⊑ unrollΞ,χ(ε)
φ ⊑Ξ,χ φ̂ κ ⊑ unrollΞ,χ(τ)

φ∶κ ⊑ unrollΞ,χ(φ̂∶τ)

κ̂ ∈ Ξ(τ̇) κ ⊑ unrollΞ,χ(κ̂)
κ ⊑ unrollΞ,χ(τ̇)

τ̇ ∈ I(Ξ, χ, τ̂) κ ⊑ unrollΞ,χ(τ̇)
κ ⊑ unrollΞ,χ(τ̂)

ε ⊑ unrollC Ξκ̂,ΞĈ ,χ
(ε)

(κ̂, Ĉ) ∈ ΞĈ(γ)
κ ⊑ unrollΞκ̂,χ(κ̂) C ⊑ unrollC Ξκ̂,ΞĈ ,χ

(Ĉ)
κ ○C ⊑ unrollC Ξκ̂,ΞĈ ,χ

(γ)

Figure 11. Order on (meta-)continuations

We distill these intuitions into an invariant about states that we
will then use to prove completeness.

∀a ∈ dom(σ̂).∃v̂.σ̂(a) = {v̂} ∧ v̂ ⪯χ Ξκ̂
∀a ∈ dom(χ).∃σ̂′.χ(a) = {σ̂′} ∧ σ̂′ ∈ π3(dom(Ξκ̂))

∀τ̇ ∈ dom(Ξκ̂).∃κ̂.Ξκ̂(τ̇) = {κ̂} ∧ κ̂ ⊏Ξκ̂
χ τ̇

∀γ ∈ dom(ΞĈ).∃Ĉ.ΞĈ(γ) = {Ĉ} ∧ Ĉ ⊏ γ
inv∗(σ̂, χ,Ξκ̂,ΞĈ)

inv∗(σ̂, χ,Ξκ̂,ΞĈ) ⟨e, ρ, σ̂, χ⟩ ⊏ dom(Ξκ̂) ∪ dom(ΞĈ)
(∃⟨ec, ρ, σ̂, χ⟩ ∈ dom(Ξκ̂)) Ô⇒ e ∈ subexpressions(ec)

κ̂ ⪯χ Ξκ̂ Ĉ ⪯ ΞĈ

inv fresh(ev(e, ρ, σ̂, χ, κ̂, Ĉ),Ξκ̂,ΞĈ)

inv∗(σ̂, χ,Ξκ̂,ΞĈ) v̂ ⪯χ Ξκ̂ κ̂ ⪯χ Ξκ̂ Ĉ ⪯ ΞĈ

inv fresh(co(κ̂, Ĉ, v̂, σ̂, χ),Ξκ̂,ΞĈ)

Where the order ⪯ states that any contexts in the (meta-)continuation
are mapped in the given table.

(`, ρ) ⪯χ Ξκ̂ ε ⪯χ Ξκ̂ ε ⪯ ΞĈ

τ̇ ∈ dom(Ξκ̂)
τ̇ ⪯χ Ξκ̂

γ ∈ dom(ΞĈ)
γ ⪯ ΞĈ

∃σ̂.χ(a) = {σ̂} ∃!χ′.⟨e, ρ, σ̂, χ′⟩ ∈ dom(Ξκ̂) ∧ χ′ ⊑ χ
⟨e, ρ, a⟩ ⪯χ Ξκ̂

And the order ⊏ states that the contexts in the (meta-)continuation
are strictly smaller than the given context.

ε ⊏Ξκ̂
χ

ε ⊏ γ
τ ⊏Ξκ̂

χ τ̇

φ∶τ ⊏Ξκ̂
χ τ̇

e′ ∈ subexpressions(e)
⟨e′, ρ, σ̂, χ⟩ ⊏Ξκ̂

χ ⟨e, ρ, σ̂, χ⟩
e′ ∈ subexpressions(e)
⟨e′, ρ, σ̂, χ⟩ ⊏ ⟨e, ρ, σ̂, χ⟩

dom(σ̂) ⊏ dom(σ̂′)
⟨ , , σ̂, ⟩ ⊏Ξκ̂

χ ⟨ , , σ̂′, ⟩
dom(σ̂) ⊏ dom(σ̂′)

⟨ , , σ̂, ⟩ ⊏ ⟨ , , σ̂′, ⟩

∀τ̇ ′ ∈ I(Ξκ̂, χ, τ̂) τ̇ ′ ⊏Ξκ
χ τ̇

τ̂ ⊏Ξκ̂
χ τ̇

Lemma 12 (Freshness invariant). If alloc produces fresh ad-
dresses, inv fresh(ς̂ ,Ξκ̂,ΞĈ) and ς̂ ,Ξκ̂,ΞĈ z→ ς̂ ′,Ξ′

κ̂,Ξ
′
Ĉ

then
inv fresh(ς̂ ′,Ξ′

κ̂,Ξ
′
Ĉ
).

Proof. By case analysis on the step.

Theorem 13 (Complete for fresh allocation). If alloc produces
fresh addresses then the resulting semantics is complete with re-
spect to states satisfying the invariant.

Proof sketch. By case analysis and use of the invariant to exploit
the fact the unrollings are unique and the singleton codomains
pigeon-hole the possible steps to only concrete ones.

6. Short-circuiting via “summarization”
All the semantics of previous sections have a performance weak-
ness that many analyses share: unnecessary propagation. Consider
two portions of a program that do not affect one another’s behavior.
Both can change the store, and the semantics will be unaware that
the changes will not interfere with the other’s execution. The more
possible stores there are in execution, the more possible contexts in
which a function will be evaluated. Multiple independent portions
of a program may be reused with the same arguments and store
contents they depend on, but changes to irrelevant parts of the store
lead to redundant computation. The idea of skipping from a change
past several otherwise unchanged states to uses of the change is
called “sparseness” in the literature [26, 28, 38].

Memoization is a specialized instance of sparseness; the base
stack may change, but the evaluation of the function does not,
so given an already computed result we can jump straight to the
answer. We use the vocabulary of “relevance” and “irrelevance” so
that future work can adopt the ideas of sparseness to reuse contexts
in more ways.

Recall the context irrelevance lemma: if we have seen the results
of a computation before from a different context, we can reuse
them. The semantic counterpart to this idea is a memo table that
we extend when popping and appeal to when about to push. This
simple idea works well with a deterministic semantics, but the non-
determinism of abstraction requires care. In particular, memo table
entries can end up mapping to multiple results, but not all results
will be found at the same time. Note the memo table space:

M ∈ Memo = Context⇀℘(Relevant)
Relevant ∶∶= ⟨e, ρ, σ⟩

There are a few ways to deal with multiple results:

1. rerun the analysis with the last memo table until the table
doesn’t change (expensive),

2. short-circuit to the answer but also continue evaluating anyway
(negates most benefit of short-circuiting), or

3. use a frontier-based semantics like in subsection 3.2 with global
Ξ and M , taking care to

(a) at memo-use time, still extend Ξ so later memo table exten-
sions will “flow” to previous memo table uses, and

(b) when Ξ andM are extended at the same context at the same
time, also create states that act like the M extension point
also returned to the new continuations stored in Ξ.

We will only discuss the final approach. The same result can
be achieved with a one-state-at-a-time frontier semantics, but we
believe this is cleaner and more parallelizable. Its second sub-
point we will call the “push/pop rendezvous.” The rendezvous
is necessary because there may be no later push or pop steps
that would regularly appeal to either (then extended) table at the
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ς̂ ,Ξ,M z→ ς̂ ′,Ξ′,M ′

⟨(e0 e1), ρ, σ, κ̂⟩,Ξ,M ⟨e0, ρ, σ,appL(e1, ρ)∶τ⟩,Ξ,M
if τ ∉ dom(M), or

⟨e′, ρ′, σ′, κ̂⟩,Ξ′,M
if ⟨e′, ρ′, σ′⟩ ∈M(τ)

where τ = ⟨(e0 e1), ρ, σ⟩
Ξ′ = Ξ ⊔ [τ ↦ κ̂]

⟨v, σ,appR(λx.e, ρ)∶τ⟩,Ξ,M ⟨e, ρ′, σ′, κ̂⟩,Ξ,M ′ if κ̂ ∈ Ξ(τ)
where ρ′ = ρ[x↦ a]

σ′ = σ ⊔ [a↦ v]
M ′ =M ⊔ [τ ↦ ⟨e, ρ′, σ′⟩]

Figure 12. Important memoization rules

same context. The frontier-based semantics then makes sure these
pushes and pops find each other to continue on evaluating. In
pushdown and nested word automata literature, the push to pop
short-circuiting step is called a “summary edge” or with respect
to the entire technique, “summarization.” We find the memoization
analogy appeals to programmers’ and semanticists’ operational
intuitions.

A second concern for using memo tables is soundness. With-
out the completeness property of the semantics, memoized results
in, e.g., an inexactly GC’d machine, can have dangling addresses
since the possible stacks may have grown to include addresses that
were previously garbage. These addresses would not be garbage
at first, since they must be mapped in the store for the contexts to
coincide, but during the function evaluation the addresses can be-
come garbage. If they are supposed to then be live, and are used
(presumably they are reallocated post-collection), the analysis will
miss paths it must explore for soundness.

Context-irrelevance is a property of the semantics without con-
tinuation stores, so there is an additional invariant to that of sec-
tion 3 for the semantics with Ξ and M : M respects context irrele-
vance.

dom(M) ⊆ dom(Ξ)
∀τ ≡ ⟨ec, ρc, σc⟩ ∈ dom(M), ⟨er, ρr, σr⟩ ∈M(τ),

κ̂ ∈ Ξ(τ), κ ∈ unrollΞ(κ̂).
∃π ≡ ⟨ec, ρc, σc, κ⟩z→∗

CESKt
⟨er, ρr, σr, κ⟩.ht(π,κ)

invM(Ξ,M)

Inexact GC does not respect context irrelevance for the same rea-
sons it is not complete: some states are spurious, meaning some
memo table entries will be spurious, and the expected path in the
invariant will not exist. The reason we use unrolled continuations
instead of simply ε for this (balanced) path is precisely for stack
inspection reasons.

The rules in Figure 12 are the importantly changed rules from
section 3 that short-circuit to memoized results. The technique
looks more like memoization with a CESIK ∗

t Ξ machine, since the
memoization points are truly at function call and return boundaries.
The pop function would need to also update M if it dereferences
through a context, but otherwise the semantics are updated mutatis
mutandis.

Fe(S,R,F,Ξ,M) = (S ∪ F,R ∪R′, F ′ ∖ S,Ξ′,M ′)

where
I = ⋃

ς∈F
{(⟨ς, ς ′⟩,Ξ′,M ′) ∶ ς,Ξ,M z→ ς ′,Ξ′,M ′}

R′ = π0I Ξ′ = ⊔π1I M ′ = ⊔π2I
∆Ξ = Ξ′ ∖Ξ ∆M =M ′ ∖M
F ′ = π1R

′ ∪ {⟨e, ρ, σ, κ̂⟩ ∶ τ ∈ dom(∆Ξ) ∩ dom(∆M).
κ̂ ∈ ∆Ξ(τ), ⟨e, ρ, σ⟩ ∈ ∆M(τ)}

Theorem 14 (Correctness). Same property is the same as in Theo-
rem 4, where reify ignores the M component.

The proof appeals to the invariant on M whose proof involves
an additional argument for the short-circuiting step that recon-
structs the path from a memoized result using both context irrel-
evance and the table invariants.

7. Related Work
The immediately related work is that of PDCFA [10, 11], CFA2 [36,
37], and AAM [33]. The stack frames in CFA2 that boost precision
are an orthogonal feature that fit into our model as an irrelevant
component along with the stack, which we did not cover in de-
tail due to space constraints. The version of CFA2 that handles
call/cc does not handle composable control, is dependent on
a restricted CPS representation, and has untunable precision for
first-class continuations. Our semantics adapts to call/cc by re-
moving the meta-continuation operations, and thus this work su-
persedes theirs; the machinery is in fact a strict generalization. The
extended version of PDCFA that inspects the stack to do garbage
collection [11] also fits into our model (subsection 4.1’s Γ̂).

We did additional work to improve the performance of the AAM
approach in Johnson et al. [16] that can almost entirely be imported
for the work in this paper. The technique that does not apply is
“store counting” for lean representation of the store component
of states when there is a global abstract store, an assumption that
does not hold for garbage collection. The implementation8 has
pushdown modules that use the ideas in this paper.

Stack inspection Stack inspecting flow analyses also exist, but
operate on pre-constructed regular control-flow graphs [1], so the
CFGs cannot be trimmed due to the extra information at construc-
tion time, leading to less precision. Backward analyses for stack
inspection also exist, with the same prerequisite [4].

Pushdown models and memoization The idea of relating push-
down automata with memoization is not new. In 1971, Stephen
Cook [6] devised a transformation to simulate 2-way (on a fixed in-
put) deterministic pushdown automata in time linear in the size of
the input, that uses the same “context irrelevance” idea to skip from
state q seen before to a corresponding first state that pops the stack
below where q started (called a terminator state). Six years later,
Neil D. Jones [18] simplified the transformation instead to interpret
a stack machine program to work on-the-fly still on a deterministic
machine, but with the same idea of using memo tables to remem-
ber corresponding terminator states. Thirty-six years after that, at
David Schmidt’s Festschrift, Robert Glück extended the technique
to 2-way non-deterministic pushdown automata, and showed that
the technique can be used to recognize context-free languages in
the standard O(n3) time [14]. Glück’s technique (as yet, correct-
ness unproven) uses the meta-language’s stack with a deeply re-
cursive interpretation function to preclude the use of a frontier and
something akin to Ξ9. By exploring the state space depth-first, the
interpreter can find all the different terminators a state can reach
one-by-one by destructively updating the memo table with the “lat-
est” terminator found. The trade-offs with this technique are that it
does not obviously scale to first-class control, and the search can
overflow the stack when interpreting moderate-sized programs. A
minor disadvantage is that it is also not a fair evaluation strategy
when allocation is unbounded. The technique can nevertheless be
a viable alternative for languages with simple control-flow mecha-
nisms. It has close similarities to “Big-CFA2” in Vardoulakis’ dis-
sertation [35].

8 http://github.com/dvanhorn/oaam
9 See gluck.rkt in online materials for Glück’s style
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Analysis of pushdown automata Pushdown models have existed
in the first-order static analysis literature [25, Chapter 7][29], and
the first-order model checking literature [3], for some time. These
methods already assume a pushdown model as input, and construct-
ing a model from a first-order program is trivial. In the setting of
higher-order functions and first-class control, model construction is
an additional problem – the one we solve here. Additionally, the al-
gorithms employed in these works expect a complete description of
the model up front, rather than work with a modified step function
(also called post), such as in “on-the-fly” model-checking algo-
rithms for finite state systems [31].

Derivation from abstract machines The trend of deriving static
analyses from abstract machines does not stop at flow analyses.
The model-checking community showed how to check temporal
logic queries for collapsible pushdown automata (CPDA), or equiv-
alently, higher-order recursion schemes, by deriving the checking
algorithm from the Krivine machine [30]. The expressiveness of
CPDAs outweighs that of PDAs, but it is unclear how to adapt
higher-order recursion schemes (HORS) to model arbitrary pro-
gramming language features. The method is strongly tied to the
simply-typed call-by-name lambda calculus and depends on finite
sized base-types.

8. Conclusion
As the programming world continues to embrace behavioral values
like functions and continuations, it becomes more important to im-
port the powerful techniques pioneered by the first-order analysis
and model-checking communities. It is our view that systematic ap-
proaches to analysis construction are pivotal to scaling them to pro-
duction programming languages. We showed how to systematically
construct executable concrete semantics that point-wise abstract to
pushdown analyses of higher-order languages. We bypass the au-
tomata theoretic approach so that we are not chained to a pushdown
automaton to model features such as first-class composable control
operators. The techniques employed for pushdown analysis gener-
alize gracefully to apply to non-pushdown models and give better
precision than regular methods.
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