
A U T O M AT I N G
A B S T R A C T I N T E R P R E TAT I O N

O F A B S T R A C T M A C H I N E S

dionna amalie glaze

April 2015

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

to the

Faculty of the
College of Computer and Information Science

Northeastern University
Boston, Massachussetts, USA

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements
of Typographic Style”. classicthesis is available for both LATEX and
LYX:

http://code.google.com/p/classicthesis/

The PDF construction used pdfTeX. pdflatex -v:

pdfTeX 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian)
kpathsea version 6.1.0
Copyright 2012 Peter Breitenlohner (eTeX)/Han The Thanh (pdfTeX).
There is NO warranty. Redistribution of this software is
covered by the terms of both the pdfTeX copyright and
the Lesser GNU General Public License.
For more information about these matters, see the file
named COPYING and the pdfTeX source.
Primary author of pdfTeX:

Peter Breitenlohner (eTeX)
Han The Thanh (pdfTeX).

Compiled with libpng 1.2.49; using libpng 1.2.49
Compiled with zlib 1.2.7; using zlib 1.2.7
Compiled with poppler version 0.20.4

Figures were constructed with Racket 6’s plot library, graphviz’s
dot version 2.26.3 (20100126.1600), and Inkscape 0.48.4 r9939 (Jan 22

2014).

Final Version as of May 23, 2018 (classicthesis version 1.0).

http://code.google.com/p/classicthesis/

Dedicated to my grandparents,

Mary Jane & Robert Johnson, and
Imogene & Willard Speck

A B S T R A C T

Static program analysis is a valuable tool for any programming lan-
guage that people write programs in. The prevalence of scripting
languages in the world suggests programming language interpreters
are relatively easy to write. Users of these languages lament their
inability to analyze their code, therefore programming language an-
alyzers (abstract interpreters) are not easy to write. This thesis more
deeply investigates a systematic method of creating abstract inter-
preters from traditional interpreters, called Abstracting Abstract Ma-
chines.

Abstract interpreters are difficult to develop due to technical, the-
oretical, and pragmatic problems. Technical problems include engi-
neering data structures and algorithms. I show that modest and sim-
ple changes to the mathematical presentation of abstract machines
result in 1000 times better running time - just seconds for moderately
sized programs.

In the theoretical realm, abstraction can make correctness difficult
to ascertain. Analysis techniques need a reason to trust them. Pre-
vious analysis techniques, if they have a correctness proof, will have
to bridge multiple formulations of a language’s semantics to prove
correct. I provide proof techniques for proving the correctness of reg-
ular, pushdown, and stack-inspecting pushdown models of abstract
computation by leaving computational power to an external factor: al-
location. Each model is equivalent to the concrete (Turing-complete)
semantics when the allocator creates fresh addresses. Even if we don’t
trust the proof, we can run models concretely against test suites to
better trust them. If the allocator reuses addresses from a finite pool,
then the structure of the semantics collapses to one of these three
sound automata models, without any foray into automata theory.

In the pragmatic realm, I show that the systematic process of ab-
stracting abstract machines is automatable. I develop a meta-language
for expressing abstract machines similar to other semantics engineer-
ing languages. The language’s special feature is that it provides an
interface to abstract allocation. The semantics guarantees that if allo-
cation is finite, then the semantics is a sound and computable approx-
imation of the concrete semantics. I demonstrate the language’s ex-
pressiveness by formalizing the semantics of a Scheme-like language
with temporal higher-order contracts, and automatically deriving a
computable abstract semantics for it.

i

A C K N O W L E D G M E N T S

Readers unfamiliar with Jorge Cham’s PhD comics are likely not PhDs
or PhD students. For those not in the know: the trials, tribulations,
trivialities and sometimes moral turpitude of the PhD as depicted in
these works of comedy really happen all the time. I know. I’m a
data point. Nothing in my life has ever been as difficult as these six
years, and I could not have done it without the help I received from
faculty, colleagues, friends and of course family. First of all, I thank
my committee:

• David Van Horn, my advisor. Our relationship started with him
as a postdoc with some cool ideas and great presentation skills.
His philosophy and approach to research are both fundamen-
tally pedagogical and progressive: everything he does, however
complicated it was before, becomes easy, obvious, and better.
Sure, this makes publishing difficult (I think reviewers get off
on being confused), but I found this way of operating enviable.
His focus on the long game calmed my indignation of rejection.
His willingness to hear me out with a half-baked idea kept me
from censoring my creativity. And his sense of humor kept our
conversations enjoyable.

• Olin Shivers, my co-advisor. Previously my advisor, Olin gives
his students room to explore and grow as researchers. He’s fa-
mously entertaining, and always has his eyes on a shiny future.

• Mitchell Wand (Mitch) introduced me to programming languages
research and a new way of thinking about proof. His ability to
cut through arguments forced me to think more precisely, to get
to the heart of the matter. I thought I had mathematical matu-
rity before I met Mitch, but after working with him for a year on
hygienic macros, well... This man knows semantics, and since I
had the privilege of our time together, I feel I know too.

• Cormac Flanagan has done a vast amount of work in practical
program analysis. I appreciate the effort he’s put in to review-
ing this dissertation.

My co-authors’ help and support improved our publications more
than I could have: thanks to Matthew Might, Ilya Sergey, and again,
David Van Horn.

I thank the other Northeastern faculty who helped me in this pro-
cess: Matthias Felleisen, for having my back; Amal Ahmed, for her
help with the harder correctness arguments in this document; Pana-
giotis Manolios (Pete), for first teaching me formal methods; and

ii

Thomas Wahl for his perspective from the model-checking commu-
nity. I would also like to thank J Strother Moore for welcoming me
at the ACL2 seminar in my final year at the University of Texas, and
generously funding my attending the 2009 ACL2 Workshop. I could
not have done so much of my work without the development team
for Racket, most notably Matthew Flatt. Thanks for all the bugfixes.

My colleagues in the lab are by far my greatest learning asset. We
spent countless hours together working, learning, complaining and
joking. My time in the PhD was immensely humbling, not because
of the difficulty of the work, but knowing all of you tremendously
talented people.

• Claire Alvis: undefined amount of fun
• Dan Brown: categorically helpful
• Harsh Raju Chamarthi: theorem disprover
• Stephen Chang: father, proof-reader, friend
• Ryan Culpepper: master macrologist
• Christos Dimoulas: keeping us honest with contracts
• Carl Eastlund: macro logician
• Tony Garnock-Jones: happy to subscribe to your conversation topics
• Evgeny (Eugene) Goldberg: satisfying conversationalist
• Dave Herman: web freedom fighter and rusty macrologist
• Mitesh Jain: reimagining correctness
• Jamie Perconti: very cool if true
• Tim Smith: my go-to for obscure automata theory
• Vincent St-Amour: telling us how we’re doing it wrong
• Paul Stansifer: fun partner and macro advocate
• Asumu Takikawa: affable, helpful and全て上手
• Sam Tobin-Hochstadt: inspired crazy macro hacker turned professor
• Aaron Turon: concurrently brilliant and a good person
• Dimitrios Vardoulakis: full stack analyst

I thank Neil Toronto for his plot library in Racket, and for all the
time he spent helping me use it to produce the plots in this disserta-
tion.

I thank my friends for keeping me from floating off into jargon-
land every time I open my mouth.

• Matthew Martinez (Mattousai): you’re my best college buddy.
Best wishes for your life in Ireland.

• Nicholas Marquez (Alex): may you and Alex find other Alexes
to happily Alex your Alex while you Alex with Alex.

• Daniel Davee (Mage): I know you’re the physicist, but quantum
mechanics will not make undecidable problems decidable.

Finally and most importantly, I thank my family for all their love
and support.

• Shaunie: I love you and your ability to put up with me.

• V: I hope you never ever have to read this document.

• Mom & Dad: the condo will appreciate, and we appreciate the
condo.

• Grandpa Johnson: for all the stories and ego-boosting.

C O N T E N T S

1 introduction and contributions 1

1.1 My thesis . 1

1.2 Structure of the dissertation 2

1.3 The case for abstract machines 3

1.4 Previously published material 4

i systematic constructions 7

2 abstracting abstract machines 11

2.1 Standardizing non-standard semantics: alloc and tick . 11

2.2 Widening for polynomial complexity 17

3 engineering engineered semantics 21

3.1 Overview . 21

3.2 Abstract interpretation of λIF 23

3.3 From machine semantics to baseline analyzer 27

3.4 Implementation techniques 29

3.5 Evaluation . 42

4 pushdown analysis via relevant allocation 47

4.1 Tradeoffs of approximation strength 47

4.2 Refinement of AAM for exact stacks 49

4.3 Stack inspection and recursive metafunctions 57

4.4 Relaxing contexts for delimited continuations 63

4.5 Short-circuiting via “summarization” 70

ii algorithmic constructions 75

5 a language for abstract machines 79

5.1 Representing an abstract machine 79

5.2 Discussion of the design space 81

5.3 The grammar of patterns and rules 82

5.4 Term equality . 85

5.5 Pattern matching . 86

5.6 Expression evaluation 87

5.7 Running a machine . 93

6 a language for aam 95

6.1 Introduction . 95

6.2 Representing an abstract abstract machine 97

6.3 Overview of running . 98

6.4 Store refinements . 100

6.5 Design motivation by example 101

6.6 Externals and NDTerm 105

6.7 Term Equality . 106

6.8 Pattern Matching . 122

6.9 Expression evaluation 126

v

Contents 1

6.10 Combining it all . 136

6.11 Paths to abstraction . 139

7 case study : temporal higher-order contracts 141

7.1 Overview of temporal higher-order contracts 142

7.2 Semantics . 146

7.3 The semantics in Limp 154

7.4 Evaluation . 163

8 related work 165

8.1 Engineering Engineered Semantics (Optimizing AAM) 165

8.2 Pushdown Analysis . 166

8.3 Semantics of abstract machines 169

9 conclusion and future work 171

9.1 Future work . 171

iii appendix 187

notational conventions 189

1 Meta rules . 189

2 Data . 190

3 Conditionals . 190

4 Quantification and scope 190

5 Lifting and ordering . 191

6 Lists . 191

7 Sets . 192

8 Records . 192

9 Functions . 192

oaam supplementals 195

pushdown supplementals 203

1 Context congruence with invΞ 204

proofs for oaam 205

proofs for pushdown 219

1 Proofs for Section 4.2 . 219

2 Proofs for Section 4.4 . 222

3 Proofs for Section 4.5 . 223

proofs for aam language 227

1 Weak equality proofs . 227

2 Weak matching proofs 242

3 Weak evaluation proofs 245

proofs for temporal contracts 247

1 Denotations . 247

2 Derivatives . 248

semantics in haskell 249

1
I N T R O D U C T I O N A N D C O N T R I B U T I O N S

“What we hope ever to do with ease, we must first learn to do with diligence.”
~Samuel Johnson

1.1 my thesis

Precise and performant analyses for higher-order languages can be systemat-
ically and algorithmically constructed from their semantics.

Higher-order languages are pervasive, take many forms, and in sev-
eral cases have complicated semantics (e.g., Python, PHP, JavaScript).
Static analyses are useful tools for programmers to detect problems
before programs run, prove the safety of program transformations to
improve performance, and even prove correctness properties. Static
analyses are also black magic that only experts can perform. Principles
of Program Analysis (POPA) [71] for instance uses heavy formalism
to define analyses in a different way than the language itself is formal-
ized. Worse, it requires additional external knowledge to efficiently
implement. There is a gap between language implementation and
language analysis.

There are several reasons that this gap exists. Compiler textbooks [67,
3], even modern ones [5], only cover the oldest framework for analy-
sis [48], which presumes the language has a strict separation of data
and control flow. Perhaps this is because overcoming the strict sepa-
ration took a PhD [87]. The dissertation is highly cited, well-written,
and solves the data-flow problem that previously held back the effi-
cient implementation of functional languages that can be expressed
in a specialized form. The oft-cited book for standard analyses which
includes a functional language analysis (POPA) uses machinery that
is distant from standard language implementation techniques. There
is a gap in the literature for designing and implementing analyses for
languages of different shapes and sizes. In this dissertation, I bridge
the gap with a collection of techniques for constructing analyses from
little more than a language’s interpreter written as an abstract ma-
chine.

Another word for “gap” we might choose is “pitfall.” Analysis
construction has many pitfalls.

• Unsoundness: Keeping analyses true to the semantics of a pro-
gramming language can be a difficult task when the two are sep-
arate artifacts. One can introduce bugs in any re-implementation

1

2 introduction and contributions

effort. Analyses further make design harder since abstractions
can easily leave out behavior.

• Imprecision and state-space explosion: Increased precision is
a double-edged sword. On the one hand, high precision distin-
guishes values enough to rule out some execution paths. On
the other hand, too many distinctions can lead to an explosion
of states either due to either inherent complexity of the com-
putation space, or accidental complexity from redundant state
representations. Imprecision means there are too few distinc-
tions to rule out impossible behavior.

Not ruling out bad behavior means that bad executions are also
explored – more computation. In both cases of high and low
precision, analysis performance can be adversely affected.

• Non-termination: It is all too easy to introduce sources of non-
termination into a program analysis. The slightest misstep with
data representation can make an unbounded state space, not
just intractably large.

This dissertation describes systematic techniques to protect analy-
sis designers from the above problems. Furthermore, these system-
atic techniques can be made algorithmic for a metalanguage that ex-
presses programming language semantics. Simply write down your
language’s semantics as a typical abstract machine, press a button,
and get a sound analysis back.

1.2 structure of the dissertation

This dissertation is split into two parts:

1. Some specific “by hand” but still systematic construction tech-
niques for program analyses are exposited.

• This chapter discusses why I focus on abstract machines
instead of a popular intermediate representation as the ve-
hicle for analysis. The end of the chapter summarizes my
previously published material and how it relates to my the-
sis.

• Chapter 2 recounts the origin of the technique employed
in this dissertation, known as “abstracting abstract ma-
chines.” (AAM)

• Chapter 3 shows simple semantics transformations that are
effective for producing efficient analyzers.

• Chapter 4 shows that AAM can be refined to construct
pushdown models instead of finite ones. The technique
employed gives the semantics access to the whole stack,

1.3 the case for abstract machines 3

so features like garbage collection and stack inspection are
easy to express.

2. The lessons learned from the first part’s constructions are dis-
tilled into a language and its semantics.

• Chapter 5 gives the concrete semantics of a core language
for expressing abstract machines.

• Chapter 6 gives the abstract semantics of the previous chap-
ter’s language by building off the notions of abstraction
used in AAM.

• Chapter 7 presents a case study using the prior chapter’s
language to express a semantics of temporal higher-order
contracts.

1.3 the case for abstract machines

First, what is an abstract machine? The term is overloaded to mean
anything from an arbitrary automaton to a specified but unimple-
mented microprocessor design. What I mean by abstract machine is
a construct along the lines of the popular SECD [57] or CESK ma-
chines [31]. Informally, an abstract machine1 is space of machine states 1 The term “abstract

machine” will be
made most formal in
Chapter 5.

that have an execution behavior defined by a finite set of reduction
rules. Machine states, or just states, have well-defined structure that
reduction rules match on to rewrite into new states. Reduction rules
govern how a machine transitions between states, and need not be
1-to-1 for input and output states. This means that one starting state
can lead the machine to travel many execution paths, not just one.

Second, why not choose a popular compiler intermediate represen-
tations like single static assignment (SSA) or continuation-passing style
(CPS)? The fact of the matter is that SSA and CPS do not express the
entire machine state, and thus cannot be the language of how a ma-
chine transitions between states. They are not what a programmer
will typically write, so there is already a compilation step that may
need some analysis. The goal of this dissertation is to bridge the gap
by removing unnecessary detours. Indeed, both SSA and CPS can
be given perfectly fine abstract machine semantics. The converse is
not necessarily true: arbitrary abstract machines are not necessarily
translatable to SSA or CPA without stretching what is actually meant
by SSA or CPS.

Finally, why are abstract machines the appropriate target? An anal-
ysis is only correct with respect to a specified language. Specification
is a trusted process, so we must be sure we get it right. Two ways
to be sure of correctness are to visually audit the spec, and to test
it. Abstract machines are high-level enough to express readable and
understandable programming language semantics, but are low-level
enough to provide a reasonable execution strategy for testing. The

4 introduction and contributions

structure of abstract machines is flexible enough to elegantly express
otherwise difficult semantic features like composable continuations.

The above benefits for abstract machines are also benefits of inter-
preters, an arguably more natural way to express the semantics of a
programming language. An important strike against interpreters is
that they have undefined behavior for divergent programs. Abstract
machines take relatively small steps, and can represent intermediate
computations. The definitions for these steps are terminating by de-
sign and do not conceal behavior in a metalanguage. Divergent pro-
grams do not diverge in an abstract machine, they just always have
another step to take. Programs with abstract components are much
more likely to diverge. Consider factorial’s execution on the abstract
number N:

factorial(n) = if n
?
= 0 then

1

elsen ∗ factorial(n− 1)

factorial(N) = {1, N ∗ factorial(N − 1)}

= {1, N ∗ factorial(N)}

= {1, N ∗UH-OH}

Its termination condition is unclear, since N − 1 = N.
As such, a foundation that gives meaning to infinite executions is

crucial. The framework of denotational semantics can give meaning
to divergent programs, but in an extensional sense – two divergent
programs are the same. Abstract machines’ steps give us insight into
just what a machine is doing – an intensional view of computation. A
program’s intension – how it computes what it computes – is what one
might use an analysis to understand. Understanding comes in many
flavors: optimization, finding security vulnerabilities, refactoring, se-
mantic navigation, debugging laziness, adherence to style guidelines
(linting), etc..

1.4 previously published material

Two chapters of this dissertation are largely restated from my publi-
cations. Chapter 3 covers the implementation work that originally ap-
peared in Glaze et al. [36]. The performance improvements I showed
with that work demonstrate the performance aspect of my thesis.
Chapter 4 covers the rephrasing of Vardoulakis and Shivers [103] in
the AAM framework, and extends it with stack inspection and com-
posable continuations, as originally appeared in Glaze and Van Horn
[35] (with some bugfixes). The notion of context and storable context
from this work improves on existing analysis technology’s ability to
precisely characterize first-class continuations, demonstrating the pre-
cision aspect of my thesis.

1.4 previously published material 5

An additional publication, Glaze et al. [37], is related to the push-
down work in Chapter 4, but uses a technique outside of the AAM
methodology that I explore in this dissertation. In that work, we
defined and explored an entire class of automata, regular introspec-
tive pushdown automata, and its reachability problem. The reachability
complexity in that class is intractible in general, so we specialized
the machinery to solve the easier garbage collection problem. Having
done that work, I’m convinced that the methodology in Chapter 4 is
far simpler to explain, prove, implement and motivate.

Part I

S Y S T E M AT I C C O N S T R U C T I O N S

I N T R O D U C T I O N T O PA RT I :
S Y S T E M AT I C C O N S T R U C T I O N S

“A vocabulary of truth and simplicity will be of service throughout your life.”
~Winston Churchill

In some respects, everything in this part of the dissertation is not
new. Higher-order control flow analysis has existed since the 1980’s
(Jones’ flow analysis of lambda expressions [46] and Shivers’ 0CFA [85]).
Higher-order pushdown analysis is newer (CFA2 in 2010 [99]) but still
precedes this work. What is new is how I formulate, prove, and im-
plement them as abstract machines. Abstract machines give a simple
and unified view of both concrete and abstract interpretation of pro-
grams.

The first chapter reviews the first foray into formulating analyses
with abstract machines. It goes through a full derivation from the
call-by-value lambda calculus expressed with a reduction semantics
to an abstract abstract machine (CESK∗t) that is a computable, sound
approximation. The second chapter builds off the first by rigorously
systematizing folklore implementation strategies step-by-step. The
resulting abstract machines are directly translated to code for a 1000-
fold performance improvement. The third chapter owes most of its
machinery for pushdown analysis to CFA2. The lessons from that
work are distilled into a new vocabulary and proof technique that
allows both concrete and abstract interpretation in the same model.
We take CFA2 further with abstract machines by adding garbage col-
lection, stack inspection, and composable control operators.

9

2
A B S T R A C T I N G A B S T R A C T M A C H I N E S

“Abstracting Abstract Machines” (AAM) is a technique conceived
by Van Horn and Might [95] for constructing analyses of program-
ming languages. Specifically, it makes finite-state approximations of
programs by simply running them in a slightly modified semantics.
AAM is founded on three ideas:

1. concrete and abstract semantics ideally should use the same
code, for correctness and testing purposes,

2. the level of abstraction should be a tunable parameter,

3. both of the above are achievable with a slight change to the
abstract machine’s state representation.

The first two points are the philosophy of AAM: correctness through
simplicity, reusability, and sanity checking with concrete semantics.
The final point is the machinery that we recount in this chapter. The
first point of simplicity emphasizes a “turn-the-crank” approach to
analysis construction.

The slight modification is to restate all recursive data structures in
a program’s state to instead redirect their self-reference through some
“address” in a store2. This way, the only source of new values is the 2 Sometimes called a

“memory,” or
generally an

“environment”

space of addresses. If the space of addresses is made finite, the state
space becomes finite. To remain a sound approximation, the store
maps to sets of storable objects to not lose information. Store updates
then become weak, so that an update to store σ[a 7→ v] becomes σ[a 7→
σ(a) ∪ {v}]3, which may also be written as σ t [a 7→ {v}]. Uses of the 3 Previously

unmapped addresses
are mapped to ∅

store, symmetrically, choose elements non-deterministically from the
sets they access at some address.

2.1 standardizing non-standard semantics : alloc and tick

The term “non-standard semantics” originates from the context of ab-
stract interpretation. A semantics is non-standard simply when it is
not the standard semantics – it can gather extra information about ex-
ecution, or just be structured differently. The open-endedness of this
term is great for a broad framework, but AAM provides more struc-
ture to focus the design space while still remaining broad enough for
most applications. The operational semantics for a language is, for
lack of a better term, lightly decorated.

At any point that the semantics needs to construct some recursive
data structure, AAM dictates that we appeal to a metafunction, alloc,

11

12 abstracting abstract machines

to provide an address at which to put the “recursive” part of the
data structure in the store.4 The allocated address takes the place4 If a rule has

multiple allocation
sites and/or

non-deterministic
choices, the alloc

function can take
extra arguments to

point at which
allocation site it’s
allocating for, and

the current
environment of

choices made before
reaching the current

allocation point.

where the recursive part of the data structure would have gone. For
example, lists’ recursive constructor

cons : Value × List → List becomes

cons : Value × Addr → List

The question becomes what to give alloc as input? AAM suggests that
each state just contain an extra component, t, that can guide alloc’s
choice of addresses. Thus we have the following spaces and functions
as parameters to an abstracted abstract machine:

Addr an arbitrary set with decidable equality

Time an arbitrary set with decidable equality

alloc : State× Time→ Addr

tick : State× Time→ Time

The open-endedness of abstract interpretation’s notion of abstract
semantics is boiled down to the choice and representation of ad-
dresses with a “helper” parameter. The name for the helper is instruc-
tive as it is historically a generalization of a notion of “binding time”
from the kCFA family of control-flow analyses. The Time domain
in this case would be a list of function application labels (expecting
expressions to be uniquely labeled) with length at most k. The tick
function would then extend and truncate this list when encountering
a function application state. Finally, addresses are pairs of binder and
binding time, so alloc destructs a function application state to find the
binder, and pairs it with the current time.

There are of course infinitely many other strategies that are waiting
to be found. A paper at VMCAI [40] suggests a number of Time
and tick constructions that abstract the execution trace in interesting
ways. The authors used this work to build a JavaScript analysis with
a multitude of allocation strategies that they evaluated for precision
and performance [47].

2.1.1 The lambda calculus to the CESK∗t machine

This section is a succession of refinements to the representation and
implementation the semantics for the lambda calculus, where the re-
sult is simultaneously a correct implementation of the lambda calcu-
lus and a sound and computable approximation of lambda calculus
expressions’ evaluation. All but the final semantics are adaptations
from Felleisen [31].

2.1 standardizing non-standard semantics : alloc and tick 13

the lambda calculus is the canonical simple language to ex-
pound ideas for functional languages:

e ∈ Expr ::= x | (e e) | λ x. e

x ∈ Var a set

There is one rule of computation: function application substitutes the
argument for the variable “bound” by the function (β-reduction).

C[(λ x. e e ′)] 7−→β C[[e
′
/x]e]

Here C is a context, or simply an expression with a hole in it.

C ∈ Context ::= [] | (C e) | (e C) | λ x. C

[e
′
/x]e is “capture-avoiding substitution” of e ′ for x in the expression

e. A lambda expression (a function) is also called an abstraction; it is a
term with a named hole that is plugged in by substitution; the name
of the hole cannot leak out by coincidentally being the same as one
in an expression being substituted in. This “leaking” is also called
“name capture,” and is avoidable by renaming a binder to something
fresh: a name that does not exist in the expression being substituted.

[e/x]y = x
?
= y→ e,y

[e/x](e0 e1) = ([e/x]e0 [e/x]e1)

[e/x]λy. e ′ = λy. [e/x]e ′ if y /∈ fv(e)

A variable is “free” in an expression if it appears out of the scope of
a binder:

fv(x) = {x}

fv((e0 e1)) = fv(e0)∪ fv(e1)

fv(λ x. e) = fv(e) \ {x}

Its β reduction rule for reducible expressions (redexes) is often ap-
plicable in many places at once, and it is impossible to algorithmically
determine the “best,” i.e., shortest, reduction sequence. It is necessary
to therefore determine a reduction strategy, with popular choices being
“by name,” “by value,” and “by need.”

the call-by-value lambda calculus is very common and
can express the others with reasonable language extensions (like state).
The choice to decompose an application on the left or right is removed
by a specialized context, E, called an “evaluation context.” In call-by-
value, the first expression in an application is evaluated to a lambda

14 abstracting abstract machines

expression before continuing on the right. Additionally, reduction
cannot happen within a lambda expression.

E ∈ EvalContext ::= [] | (E e) | (v E)

v ∈ Value ::= λ x. e

With this kind of context instead of C above, reduction is determinis-
tic.

the ck machine represents this kind of evaluation context so
that there is no need to decompose the expression into a context and
a redex, substitute, plug in the hole, rinse and repeat. Instead, the
evaluation context can be represented in a more favorable way: an
evaluation context can be seen as a sequence of composed functions.

decompose([]) = identity-function

decompose((E e)) = ([] e) ◦ decompose(E)

decompose((v E)) = (v []) ◦ decompose(E)

These small functions we will call frames of the continuation. If we
now represent these functions as data structures, with ◦ instead a list
constructor, we get

φ ∈ Frame ::= appL(e) | appR(v)

K ∈ Kont ::= ε | φ:K

Reduction can now use the top of the continuation to pivot and look
for the next redex without a full plug / decompose step.

(e0 e1),K 7−→ e0, appL(e1):K

v, appL(e):K 7−→ e, appR(v):K

v, appR(λ x. e):K 7−→β [v/x]e,K

Substitution isn’t really how one would implement the lambda cal-
culus. Programs don’t rewrite themselves as their method of running,
they have data structures, registers, memory.

the cek machine represents substitutions as data structures to
be interpreted as execution proceeds. Names are not substituted
away, but instead are added to a data structure for delaying a sub-
stitution called an environment. Expressions now have variables in
them that aren’t bound by a lambda expression, but instead by the
environment. For this reason, an expression (with an “open” scope)
and environment (that “closes” the scope) pair is called a “closure.”
The frame components are augmented to carry environments.

ρ ∈ Env = Var ⇀
fin

(Expr× Env)

φ ∈ Frame ::= appL(e, ρ) | appR(v, ρ)

2.1 standardizing non-standard semantics : alloc and tick 15

The resulting semantics is the CEK machine.

x, ρ,K 7−→ v, ρ ′,K where (v, ρ ′) = ρ(x)

(e0 e1), ρ,K 7−→ e0, ρ, appL(e1, ρ):K

v, ρ, appL(e, ρ ′):K 7−→ e, ρ ′, appR(v, ρ):K

v, ρ, appR(λ x. e, ρ ′):K 7−→β e, ρ[x 7→ (v, ρ)],K

This is looking more like a possible language implementation, ex-
cept these environments can get big and full of garbage (substitutions
that end up never happening). This can be fixed by treating substitu-
tions as resources.

the cesk machine explicitly allocates a fresh address to store
the substitution in a store that can be garbage-collected. Environ-
ments hold on to these addresses instead of the values themselves.

ρ = Var ⇀
fin

Addr

Addr a set

σ ∈ Store = Addr→ (Value× Env)

The resulting semantics is the CESK machine.

x, ρ,σ,K 7−→ v, ρ ′,σ,K where (v, ρ ′) = σ(ρ(x))

(e0 e1), ρ,σ,K 7−→ e0, ρ,σ, appL(e1, ρ):K

v, ρ,σ, appL(e, ρ ′):K 7−→ e, ρ ′,σ, appR(v, ρ):K

v, ρ,σ, appR(λ x. e, ρ ′):K 7−→β e, ρ ′[x 7→ a],σ[a 7→ (v, ρ)],K where a /∈ dom(σ)

Garbage collection finds a conservative set of addresses that must
remain in the store for evaluation to continue normally, and drops
the rest since they are useless. The typical way to compute this set is
to first find what addresses the state originally refers to (touch), then
iteratively find what the values touch that those addresses point to.
The iteration step is called the reachability computation. A closure
touches the addresses that it can possibly refer to: the free variables
that are mapped in the environment.

T(e, ρ) = T(appL(e, ρ)) = T(appR(e, ρ)) = {ρ(x) : x ∈ fv(e)}

T(ε) = ∅
T(φ:K) = T(φ)∪ touch(K)

R(root,σ) = {b : a ∈ root,a ;∗σ b}

where
(v, ρ) = σ(a) b ∈ T(v, ρ)

a ;σ b

Garbage collection is then the restriction of the store to reachable
addresses from the state’s touched addresses:

e, ρ,σ,K 7−→Γ e, ρ,σ|L,K

where L = R(T(e, ρ)∪ T(K),σ)

16 abstracting abstract machines

ς , t 7−→ ς ′,u a = alloc(ς), u = tick(ς , t)

x, ρ,σ,K, _ v, ρ ′,σ,K, _ where inl (v, ρ ′) ∈ σ(ρ(x))
(e0 e1), ρ,σ,K, _ e0, ρ,σt [a 7→ inrK], appL(e1, ρ):a, _

v, ρ,σ, appL(e, ρ ′):b, _ e, ρ ′,σ, appR(v, ρ):b, _

v, ρ,σ, appR(λ x. e, ρ ′):b, _ e, ρ[x 7→ a],σt [a 7→ inl (v, ρ)],K, _

where inrK ∈ σ(b)
Figure 1: The CESK∗t machine

These machines all implement the full semantics of the lambda
calculus, but with the CESK machine, we are very close to a represen-
tation that easily abstracts to a finite state automaton.

the CESK∗t machine represents recursive data structures that
the semantics constructs5 with “recursive parts” rerouted through the5 expressions are no

longer
rewritten/built, so

there are only
finitely many of

them

store. Fortunately, the only recursion left in the CESK machine is the
list structure for the continuation. Thus, the tail of a continuation cons
is replaced with an address. Second, we use the aforementioned weak
update semantics for extending the store, and use the alloc and tick
functions. Finally, all uses of the store non-deterministically resolve
to one of the values stored in the given address.

κ̂ ∈ K̂ont = ε | φ:a

s ∈ Storable = (Value× Env) + K̂ont

σ ∈ Store = Addr ⇀
fin
℘(Storable)

ς ∈ State = Expr× Env× Store× K̂ont

Garbage collection is similar to previously, with only the following
changes:

T(inl (v, ρ)) = T(v, ρ)

T(inr ε) = ∅
T(inrφ:a) = T(φ)∪ {a}

s ∈ σ(a) b ∈ T(s)

a ;σ b

2.2 widening for polynomial complexity 17

The size of the state space is a function of the size of the analyzed
expression, the address space’s size, and the size of the Time space.

size(e,A, T) = |Expr| ∗ |Env| ∗ |Store| ∗ |Kont| ∗ T
where |Expr| = treesize(e)

|Var| = |supp(e)|

|Value| = |λs(e)|

|Env| = A|Var|

|Frame| = |Expr| ∗ |Env|+ |Value| ∗ |Env|

|Kont| = 1+ |Frame| ∗A
|Storable| = |Kont|+ |Value| ∗ |Env|

|Store| = (2|Storable)A

The auxiliary functions are simple tree-walks:

treesize(x) = 1

treesize((e0 e1)) = 1+ treesize(e0) + treesize(e1)

treesize(λ x. e) = 1+ treesize(e)

supp(x) = {x}

supp((e0 e1)) = supp(e0)∪ supp(e1)

supp(λ x. e) = {x}∪ supp(e)

λs(x) = ∅
λs((e0 e1)) = λs(e0)∪ λs(e1)
λs(λ x. e) = λs(e)∪ {λ x. e}

The second two functions have size at most treesize(e), which is what
we refer to as n: the “input size” for complexity analysis.

The case where alloc produces fresh addresses and thus implements
the CESK semantics exactly means that A = ω6, and the state space 6 The first limit

ordinal, isomorphic
to the set of natural
numbers

is unbounded. The case where alloc produces addresses from a finite
pool means that the state space is finite, and furthermore 7−→∗ (reach-
able states) is finite and effectively computable. The exponents makes
this technical use of “effective” not so practically effective, however.

2.2 widening for polynomial complexity

Provided that the address and time spaces are polynomially sized, the
state exploration algorithm for the CESK∗t machine can be accelerated
to run in polynomiral time at the cost of precision. The key idea is to
factor out the exponentially sized components to be shared amongst
states. Instead of a state space that looks like 2State, we have a state
space that looks like LargeSmall. The large components grow monoton-
ically for each small state. If the large components grow only poly-
nomially many times, and Small is polynomially sized, the number

18 abstracting abstract machines

of steps to compute is bounded by the product of those polynomi-
als: still polynomial. Stepping a single state takes O(|Storable| ∗ logn)
time due to environment lookups and extensions (logn), the number
of non-deterministic choices (|Storable|) and the assumption that the
following are constant time operations:

• allocation of machine components

• consing output states to a result list

• alloc and tick

Concretely, the original AAM paper suggests a widening that shares
the store amongst all states, and an allocation scheme that makes the
ρ component the identity function (0CFA). There are a couple of ways
to do this:

1. treat the set of all seen states and the global store as one big
state that steps (all states step, all modifying the global store)
until it reaches a fixed point;

2. separate seen states and the stores they were seen at from unex-
plored states, and only step unexplored states, which all modify
the global store.

I call the first kind a whole-space semantics, and the second a frontier-
based semantics. The second is more precise, because states that are
never again visited do not need to be processed again. However,
since we determine if a state is unexplored by comparing stores, the
comparison can be expensive. It turns out there is a simple fix for
this that Shivers [87] originally discovered, and which I recount and
modify in the next chapter. Essentially states are stored with the age
of the store instead of the whole store.

complexity the global store can be updated |Storable|∗ |Addr| many
times, and |Expr| ∗ |Env| ∗ |Kont| ∗ |Time| many states can be explored.
With the given allocation strategy, these sizes are both O(n3). Envi-
ronment lookups are removable because Env = {λx.x}, so that leaves
store lookups. The store can be represented as a vector, and all
names can be represented as unique indices into the vector, so we
treat lookups and updates as O(1). The number of iterations for
the whole-space semantics is in the worst case the number of states
plus the number of store updates: O(n3). The cost of a big step
is the number of states O(n3) times the cost of a small step O(n2)

times the cost to put a state into a set plus the cost of a store join
O(logn3 + logn) = O(logn). Overall the cost is O(n8 logn). Yikes.

For the frontier-based semantics, the number of iterations is irrele-
vant. Instead, the number of times a state can be stepped is relevant
because the frontier is only extended with states that need stepping.

2.2 widening for polynomial complexity 19

Thus, the cost is the number of states O(n3) times the number of pos-
sible updates O(n3) times the cost of a step. The cost to step includes
store comparison. We will treat store comparison as logarithmic time
since the store age is a number logarithmic in size of the number of
store updates 7. Each state step then takes O(|Storable| ∗ logn) time. 7 Often the

logarithmic factor
involved in store
comparisons is
ignored because the
number of store
updates rarely
exceeds a machine
word.

Therefore overall the complexity of frontier-based semantics is again
O(n8 logn).

The original 0CFA uses CPS, so the continuations are part of the
program itself. It is also frontier-based. The number of states and
storables is O(n), there is a O(n logn) cost per state step, and O(n2)

many possible store updates, so overall is O(n4 logn). Shivers did not
have a complexity result in his dissertation, though folklore claims
0CFA is cubic. The established O(n3) bound is for a different, less
precise8, formulation [71] that monotonically increases each n states 8 flow-insensitive,

i.e., order of
evaluation does not
matter to outcome

at most n times, where each increase possibly affects n more states.
Worst-case running times are almost meaningless analyses for CFA,
however, since the bounds are so pessimistic on what possible pro-
gram behaviors there are.

addressing the “yikes” There is a constant battle between pre-
cision and performance for analyses. Higher precision often means a
theoretically larger state space, but the better precision also can cull
execution paths, meaning less work. The contention is that extra pre-
cision may not be enough to win back the added cost. Also possible
is that the “theoretically larger” state space is met in practice when
a “pathological” case that leads to state explosion turns out to be
more common than originally thought. A compiler-writer looking for
a seriously fast analysis with “good-enough” precision can use this
document for abstraction principles, but should look elsewhere [6, 1]
for precision/performance tradeoffs. I focus on generally and sys-
tematically applicable techniques to “off-the-shelf” languages with
effort towards higher precision for verification purposes. In the next
chapter we will look at a derivation approach to curtailing the high
complexity of this chapter in asymptotics and significantly smaller
constant factors.

3
E N G I N E E R I N G E N G I N E E R E D S E M A N T I C S

We have seen that AAM provides sound predictive models of pro-
gram behavior, but in order for such models to be effective, they must
be efficiently computable and correct.

Since these analyses so closely resemble a language’s interpreter
(a) implementing an analysis requires little more than implementing
an interpreter, (b) a single implementation can serve as both an in-
terpreter and analyzer, and (c) verifying the correctness of the imple-
mentation is straightforward.

Unfortunately, the AAM approach yields analyzers with poor per-
formance relative to hand-optimized analyzers. This chapter takes
aim squarely at this “efficiency gap,” and narrows it in an equally
systematic way through a number of simple steps, many of which
are inspired by run-time implementation techniques such as laziness
and compilation to avoid interpretative overhead. Each of these steps
is proven correct, so the end result is an implementation that is trust-
worthy and efficient.

The intention is to develop a systematic approach to deriving a
practical implementation of an abstract-machine-based analyzer us-
ing mostly semantic means rather than tricky and unreliable engi-
neering.

3.1 overview

This chapter starts with improving the complexity of the widened
CESK∗t semantics of the previous chapter by making reasonable ap-
proximations. We then apply our step-by-step optimization tech-
niques in the simplified setting of a core-but-more-realistic9 func- 9 More realistic than

the pure lambda
calculus

tional language. This allows us to explicate the optimizations with
a minimal amount of inessential technical overhead. Finally, I give
an evaluation of the approach scaled up to an analyzer for a real-
istic untyped, higher-order imperative language with a number of
interesting features and then measure improvements across a suite of
benchmarks.

At each step during the initial presentation and development, we
evaluated the implementation on a set of benchmarks. The high-
lighted benchmark in figure 2 is from Vardoulakis and Shivers [103]
that tests distributivity of multiplication over addition on Church nu-
merals. For the step-by-step development, this benchmark is particu-
larly informative:

1. it can be written in most modern programming languages,

21

22 engineering engineered semantics

000000000

252525252525252525

505050505050505050

757575757575757575

 §4 §4 §4 §4 §4 §4 §4 §4 §4 §5.1 §5.1 §5.1 §5.1 §5.1 §5.1 §5.1 §5.1 §5.1
 §5.2 §5.2 §5.2 §5.2 §5.2 §5.2 §5.2 §5.2 §5.2 §5.3 §5.3 §5.3 §5.3 §5.3 §5.3 §5.3 §5.3 §5.3

 §5.4 §5.4 §5.4 §5.4 §5.4 §5.4 §5.4 §5.4 §5.4

 §5.5.3 §5.5.3 §5.5.3 §5.5.3 §5.5.3 §5.5.3 §5.5.3 §5.5.3 §5.5.3 Rate of state transitions speed-upRate of state transitions speed-upRate of state transitions speed-upRate of state transitions speed-upRate of state transitions speed-upRate of state transitions speed-upRate of state transitions speed-upRate of state transitions speed-upRate of state transitions speed-up

000000000
100100100100100100100100100
200200200200200200200200200
300300300300300300300300300
400400400400400400400400400

 §4 §4 §4 §4 §4 §4 §4 §4 §4 §5.1 §5.1 §5.1 §5.1 §5.1 §5.1 §5.1 §5.1 §5.1 §5.2 §5.2 §5.2 §5.2 §5.2 §5.2 §5.2 §5.2 §5.2 §5.3 §5.3 §5.3 §5.3 §5.3 §5.3 §5.3 §5.3 §5.3
 §5.4 §5.4 §5.4 §5.4 §5.4 §5.4 §5.4 §5.4 §5.4

 §5.5.3 §5.5.3 §5.5.3 §5.5.3 §5.5.3 §5.5.3 §5.5.3 §5.5.3 §5.5.3 Run time speed-upRun time speed-upRun time speed-upRun time speed-upRun time speed-upRun time speed-upRun time speed-upRun time speed-upRun time speed-up

Figure 2: Factor improvements over the baseline analyzer for the Var-
doulakis and Shivers benchmark in terms of the rate of state tran-
sitions and total analysis time. (Bigger is better.) Each point is
marked with the section that introduces the optimization.

2. it was designed to stress an analyzer’s ability to deal with com-
plicated environment and control structure arising from the use
of higher-order functions to encode arithmetic, and

3. its improvement is about median in the benchmark suite con-
sidered in section 3.5, and thus it serves as a good sanity check
for each of the optimization techniques considered.

We start, in section 3.2, by developing an abstract interpreter ac-
cording to the AAM approach of the last chapter. In section 3.3, we
perform a further abstraction by store-allocating values originally in
continuation frames. The resulting analyzer sacrifices precision for
speed and is able to analyze the example in about 1 minute. We
therefore take this widened interpreter as the baseline for our evalua-
tion.

Section 3.4 gives a series of simple abstractions and implementa-
tion techniques that, in total, speed up the analysis by nearly a factor
of 500, dropping the analysis time to a fraction of a second. Figure 2

shows the step-wise improvement of the analysis time for this exam-
ple.

The techniques we propose for optimizing analysis fall into the
following categories:

1. generate fewer states by avoiding the eager exploration of non-
deterministic choices that will later collapse into a single join
point. We accomplish this by applying lazy evaluation tech-
niques so that nondeterminism is evaluated by need.

2. generate fewer states by avoiding unnecessary, intermediate states
of a computation. We accomplish this by applying compilation
techniques from functional languages to avoid interpretive over-
head in the machine transition system.

3. generate states faster. We accomplish this by better algorithm
design in the fixed-point computation we use to generate state
graphs.

3.2 abstract interpretation of λif 23

(a) Baseline (b) Lazy (c) Compiled (& lazy)
Figure 3: Example state graphs for Earl et. al. program. Gray states follow variable references, ev states are
black, and all others are white. Part (a) shows the baseline analyzer result. It has long “corridor” transitions
and “diamond” subgraphs that fan-out from nondeterminism and fan-in from joins. Part (b) shows the result
of performing nondeterminism lazily and thus avoids many of the diamond subgraphs. Part (c) shows the
result of abstract compilation that removes interpretive overhead in the form of intermediate states, thus
minimizing the corridor transitions. The end result is a more compact abstraction of the program that can be
generated faster.

Figure 3 shows the effect of (1) and (2) for the small motivating ex-
ample in Earl, et al. [29]. By generating significantly fewer states at
a significantly faster rate, we are able to achieve large performance
improvements in terms of both time and space.

3.2 abstract interpretation of λIF

In this section, we use the AAM approach to define a sound analytic
framework for a core higher-order functional language: lambda cal-
culus with conditionals and base type operations. We will call this
language λIF. In the subsequent sections, we will explore optimiza-
tions for the analyzer in this simplified setting, but scaling these tech-
niques to realistic languages is straightforward and has been done for
the analyzer evaluated in section 3.5.

λIF is a family of programming languages parameterized by a set
of base values and operations. To make things concrete, we consider
a member of the λIF family with integers, booleans, and a few opera-
tions. Figure 4 defines the syntax of λIF. It includes variables, literals
(either integers, booleans, or operations), λ-expressions for defining
procedures, procedure applications, and conditionals. Expressions

24 engineering engineered semantics

Expressions e = x
`

| lit`(l)

| λ
`
x. e

| (e e)
`

| if`(e, e, e)

Variables x = x | y | . . .

Literals l = z | b | o

Integers z = 0 | 1 | −1 | . . .

Booleans b = tt | ff

Operations o = zero? | add1 | sub1 | . . .

Figure 4: Syntax of λIF

Values v,u = clos (x, e, ρ) | l | κ

States ς = evt(e, ρ,σ, κ)

| co (κ, v,σ)

| apt(v, v,σ, κ)

Continuations κ = halt

| fun(v,aκ)

| arg(e, ρ,aκ)

| ifk (e, e, ρ,aκ)

Addresses a ∈ Addr

Times t ∈ Time

Environments ρ ∈ Var ⇀ Addr

Stores σ ∈ Addr ⇀ ℘(Value)

Figure 5: Abstract machine components

carry a label, `, which is drawn from an unspecified set and denotes
the source location of the expression; labels are used to disambiguate
distinct, but syntactically identical pieces of syntax. We omit the label
annotation in contexts where it is irrelevant.

The semantics is defined in terms of a machine model. The ma-
chine components are defined in figure 5; figure 6 defines the tran-
sition relation (unmentioned components stay the same). The evalu-
ation of a program is defined as the set of traces that arise from it-
erating the machine transition relation. The traces function produces
the set of all proofs of reachability for any state ς from the injection
of program e (from which one could extract a string of states). The
machine is a very slight variation on a standard abstract machine for
λIF in “eval, continue, apply” form [22]. It can be systematically de-
rived from a definitional interpreter through a continuation-passing
style transformation and defunctionalization, or from a structural op-

3.2 abstract interpretation of λif 25

traces(e) = {evt0(e,∅,∅, halt) 7−→→ ς} where

ς 7−→ ς ′ defined to be the following

let t ′ = tick(ς)

evt(x , ρ,σ, κ) 7−→ cot
′
(κ, v,σ) if v ∈ σ(ρ(x))

evt(lit (l), ρ,σ, κ) 7−→ cot
′
(κ, l,σ)

evt(λ x. e, ρ,σ, κ) 7−→ cot
′
(κ, clos (x, e, ρ),σ)

evt((e0 e1)
`
, ρ,σ, κ) 7−→ evt

′
(e0, ρ,σ ′, argt`(e1, ρ,aκ))

where aκ = allockontt`(σ, κ)

σ ′ = σt [aκ 7→ {κ}]

evt(if`(e0, e1, e2), ρ,σ, κ) 7−→ evt
′
(e0, ρ,σ ′, ifkt(e1, e2, ρ,aκ))

where aκ = allockontt`(σ, κ)

σ ′ = σt [aκ 7→ {κ}]

co (argt`(e, ρ,aκ), v,σ) 7−→ evt(e, ρ,σ, funt`(v,aκ))

co (funt`(u,aκ), v,σ) 7−→ apt`(u, v, κ,σ) if κ ∈ σ(aκ)
co (ifkt(e0, e1, ρ,aκ), tt,σ) 7−→ evt

′
(e0, ρ,σ, κ) if κ ∈ σ(aκ)

co (ifkt(e0, e1, ρ,aκ), ff,σ) 7−→ evt
′
(e1, ρ,σ, κ) if κ ∈ σ(aκ)

apt`(clos (x, e, ρ), v,σ, κ) 7−→ evt
′
(e, ρ ′,σ ′, κ)

where a = alloc(ς)

ρ ′ = ρ[x 7→ a]

σ ′ = σt [a 7→ {v}]

apt`(o, v,σ, κ) 7−→ co (κ, v ′,σ) if v ′ ∈ ∆(o, v)

Figure 6: Abstract abstract machine for λIF

erational semantics using the refocusing construction of Danvy and
Nielsen [24].

concrete interpretation To characterize concrete interpreta-
tion, set the implicit parameters of the relation given in figure 6 as
follows:

alloc(ς) = a where a /∈ dom of the σ within ς

allockontt`(σ, κ) = aκ where aκ /∈ dom(σ)

These functions appear to ignore ` and t, but they can be used to de-
terminize the choice of fresh addresses. The t on stores in the figure
is a point-wise lifting of ∪: σ t σ ′ = λa.σ(a) ∪ σ ′(a). The result-
ing relation is non-deterministic in its choice of addresses, however it
must always choose a fresh address when allocating a continuation or
variable binding. If we consider machine states equivalent up to con-
sistent renaming and fix an allocation scheme, this relation defines a
deterministic machine (the relation is really a function).

26 engineering engineered semantics

The interpretation of primitive operations is defined by setting ∆
as follows:

z+ 1 ∈ ∆(add1, z) z− 1 ∈ ∆(sub1, z)

tt ∈ ∆(zero?, 0) ff ∈ ∆(zero?, z) if z 6= 0

abstract interpretation To characterize abstract interpreta-
tion, set the implicit parameters just as above, but drop the a 6∈ σ con-
dition. The ∆ relation takes some care to not make the analysis run
forever; a simple instantiation is a flat abstraction where arithmetic
operations return an abstract top element Z, and zero? returns both
tt and ff on Z. This family of interpreters is also non-deterministic
in choices of addresses, but it is free to choose addresses that are al-
ready in use. Consequently, the machines may be non-deterministic
when multiple values reside in a store location.

It is important to recognize from this definition that any allocation
strategy is a sound abstract interpretation [65]. In particular, concrete
interpretation is a kind of abstract interpretation. So is an interpre-
tation that allocates a single cell into which all bindings and con-
tinuations are stored. The former is an abstract interpretation with
uncomputable reachability and gives only the ground truth of a pro-
gram’s behavior; the latter is an abstract interpretation that is easy
to compute but gives little information. Useful program analyses lay
somewhere in between and can be characterized by their choice of
address representation and allocation strategy. Uniform kCFA [70],
presented next, is one such analysis.

uniform kcfa To characterize uniform kCFA, set the allocation
strategy as follows, for a fixed constant k:

Time = Label∗

t0 = ε

alloc(apt`(clos (x, e, ρ), v,σ, κ)) = xb`tck
allockontt`(σ, κ) = `t

tick(evt(e, ρ,σ, κ)) = t

tick(co (argt(e, ρ,aκ), v,σ)) = t

tick(apt`(u, v, κ)) = b`tck
btc0 = bεck = t0

b`tck+1 = `btck

The b·ck notation denotes the truncation of a list of symbols to the
leftmost k symbols.

3.3 from machine semantics to baseline analyzer 27

All that remains is the interpretation of primitives. For abstract
interpretation, we set ∆ to the function that returns Z on all inputs—a
symbolic value we interpret as denoting the set of all integers.

At this point, we have abstracted the original machine to one which
has a finite state space for any given program, and thus forms the
basis of a sound, computable program analyzer for λIF.

3.3 from machine semantics to baseline analyzer

The uniform kCFA allocation strategy would make traces in figure 6

a computable abstraction of possible executions, but one that is too
inefficient to run, even on small examples. Through this section, we
explain a succession of approximations to reach a more appropriate
baseline analysis. We ground this path by first formulating the analy-
sis in terms of a classic fixed-point computation.

3.3.1 Static analysis as fixed-point computation

Conceptually, the AAM approach calls for computing an analysis as a
graph exploration: (1) start with an initial state, and (2) compute the
transitive closure of the transition relation from that state. All visited
states are potentially reachable in the concrete, and all paths through
the graph are possible traces of execution.

We can cast this exploration process in terms of a fixed-point cal-
culation. Given the initial state ς0 and the transition relation 7−→, we
define the global transfer function:

Fς0 : ℘(State)× ℘(State× State)→ ℘(State)× ℘(State× State).

Internally, this global transfer function computes the successors of all
supplied states, and then includes the initial state:

Fς0(V ,E) = ({ς0}∪ V ′,E ′)
E ′ = {(ς , ς ′) | ς ∈ V and ς 7−→ ς ′}

V ′ = {ς ′ | (ς , ς ′) ∈ E ′}

Then, the evaluator for the analysis computes the least fixed-point of
the global transfer function: eval(e) = lfp(Fς0), where ς0 = evt0(e,∅,∅, halt).

The possible traces of execution tell us the most about a program,
so we take traces(e) to be the (regular) set of paths through the com-
puted graph. I will elide the construction of the set of edges.

In the next subsection, we fix this with store widening to reach
polynomial (albeit of high degree) complexity. This widening effec-
tively lifts the store out of individual states to create a single, global
shared store for all.

28 engineering engineered semantics

3.3.2 Store widening

A common technique to accelerate convergence in flow analyses is to
share a common, global store. Formally, we can cast this optimization
as a second abstraction or as the application of a widening operator
10 during the fixed-point iteration. The precision is greatly reduced10 Technically, we

would have to copy
the value of the

global store to all
states being stepped

to fit the formal
definition of a

widening, but this
representation is

order-isomorphic to
that.

post-widening, but a widening is necessary in order to escape the
exponential state space.

Since we can cast this optimization as a widening, there is no need
to change the transition relation itself. Rather, what changes is the
structure of the fixed-point iteration. In each pass, the algorithm will
collect all newly produced stores and join them together. Then, before
each transition, it installs this joined store into the current state.

To describe this process, AAM defined a transformation of the re-
duction relation so that it operates on a pair of a set of contexts (C)
and a store (σ). A context includes all non-store components, e.g., the
expression, the environment and the stack. The transformed relation,̂7−→, is

(C,σ) ̂7−→ (C ′,σ ′),

where C ′ = {c ′ : ∃c ∈ C, c ′,σc.wn(c,σ) 7−→ wn(c ′,σc)}

σ ′ =
⊔

{σc : ∃c ∈ C, c ′.wn(c,σ) 7−→ wn(c ′,σc)}

wn : Context× Store→ State

wn(ev (e, ρ, κ),σ) = ev (e, ρ,σ, κ)

wn(co (v, κ),σ) = co (v, κ,σ)

wn(ap (u, v, κ),σ) = ap (u, v,σ, κ)

To retain soundness, this store grows monotonically as the least up-
per bound of all occurring stores.

3.3.3 Store-allocate all values

The final approximation we make to get to our baseline is to store-
allocate all values that appear, so that any non-machine state that
contains a value instead contains an address to a value. The AAM
approach stops at the previous optimization. However, the fun con-
tinuation stores a value, and this makes the space of continuations
quadratic rather than linear in the size of the program, for a mono-
variant analysis like 0CFA. Having the space of continuations grow
linearly with the size of the program will drop the overall complexity
to cubic (as expected). We also need to allocate an address for the
argument position in an ap state.

To achieve this linearity for continuations, we allocate an address
for the value position when we create the continuation. This address
and the tail address are both determined by the label of the appli-
cation point, so the space becomes linear and the overall complexity

3.4 implementation techniques 29

drops by a factor of n. This is a critical abstraction in languages
with n-ary functions, since otherwise the continuation space grows
super-exponentially (O(nn)). We extend the semantics to addition-
ally allocate an address for the function value when creating the fun
continuation. The continuation has to contain this address to remem-
ber where to retrieve values from in the store.

The new evaluation rules follow, where t ′ = tick(ς):

cot(arg(e, ρ,aκ), v,σ) 7−→ evt
′
(e, ρ,σ ′, fun(a,aκ))

where a = alloc(ς)

σ ′ = σt [a 7→ {v}]

Now instead of storing the evaluated function in the continuation
frame itself, we indirect it through the store for further control on
complexity and precision:

cot(fun(a,aκ), v,σ) 7−→ apt
′
` (u,a, κ,σ ′)

if κ ∈ σ(aκ),u ∈ σ(a)
where a = alloc(ς)

σ ′ = σt [a 7→ {v}]

Associated with this indirection, we now apply all functions stored
in the address. This nondeterminism is necessary in order to continue
with evaluation.

3.4 implementation techniques

In this section, we discuss the optimizations for abstract interpreters
that yield our ultimate performance gains. We have two broad cate-
gories of these optimizations: (1) pragmatic improvement, (2) transi-
tion elimination. The pragmatic improvements reduce overhead and
trade space for time by utilizing:

1. timestamped stores;

2. store deltas; and

3. imperative, pre-allocated data structures.

The transition-elimination optimizations reduce the overall number
of transitions made by the analyzer by performing:

4. frontier-based semantics;

5. lazy nondeterminism; and

6. abstract compilation.

30 engineering engineered semantics

All pragmatic improvements are precision preserving (form com-
plete abstractions), but the “optimizations” are not in some cases11,11 I use scare-quotes

since the term
“optimization” is

usually reserved to
semantics-
preserving

transformations.
Sometimes we

approximate.

for reasons we will describe. We did not observe the precision differ-
ences in our evaluation.

We apply the frontier-based semantics combined with timestamped
stores as our first step. The move to the imperative will be made last
in order to show the effectiveness of these techniques in the purely
functional realm.

3.4.1 Timestamped frontier

The semantics given for store widening in section 3.3.2, while simple,
is wasteful. It also does not model what typical implementations do.
It causes all states found so far to step each iteration, even if they
are not revisited. This has negative performance and precision conse-
quences (changes to the store can travel back in time in straight-line
code). We instead use a frontier-based semantics that corresponds
to the classic worklist algorithms for analysis. The difference is that
the store is not modified in-place, but updated after all frontier states
have been processed. This has implications for the analysis’ precision
and determinism. Specifically, higher precision, and it is determinis-
tic even if set iteration is not.

The state space changes from a store and set of contexts to a set
of seen abstract states (context plus store), S, a set of contexts to step
(the frontier), F, and a store to step those contexts with, σ:

(S, F,σ) ̂7−→ (S∪ S ′, F ′,σ ′)

We constantly see more states, so S is always growing. The frontier,
which is what remains to be done, changes. Let’s start with the result
of stepping all the contexts in F paired with the current store (call it I
for intermediate):

I = {(c ′,σ ′) | wn(c,σ) 7−→ wn(c ′,σ ′), c ∈ F}

The next store is the least upper bound of all the stores in I:

σ ′ =
⊔

{σ | (_,σ) ∈ I}

The next frontier is exactly the states that we found from stepping the
last frontier, but have not seen before. They must be states, so we pair
the contexts with the next store:

F ′ = {c | (c, _) ∈ I, (c,σ ′) /∈ S}

Finally, we add what we know we had not yet seen to the seen set:

S ′ = {(c,σ ′) | c ∈ F ′}

3.4 implementation techniques 31

To inject a program e into this machine, we start off knowing we have
seen the first state, and that we need to process the first state:

inject(e) = ({(c0,⊥)}, {c0},⊥)
where c0 = ev (e,⊥, halt)

Notice that now S has several copies of the abstract store in it. As
it is, this semantics is much less efficient (but still more precise) than
the previously proposed semantics because membership checks have
to compare entire stores. Checking equality is expensive because the
stores within each state are large, and nearly every entry must be
checked against every other due to high similarities amongst stores.

And, there is a better way. Shivers’ original work on kCFA was
susceptible to the same problem, and he suggested three complemen-
tary optimizations: (1) make the store global; (2) update the store
imperatively; and (3) associate every change in the store with a ver-
sion number – its timestamp. Then, put timestamps in states where
previously there were stores. Given two states, the analysis can now
compare their stores just by comparing their timestamps – a constant-
time operation.

There are two subtle losses of precision in Shivers’ original times-
tamp technique that we can fix.

1. In our semantics, the store does not change until the entire
frontier has been explored. This avoids cross-branch pollution
which would otherwise happen in Shivers’ semantics, e.g., when
one branch writes to address a and another branch reads from
address a.

2. The common implementation strategy for timestamps destruc-
tively updates each state’s timestamp. This loses temporal in-
formation about the contexts a state is visited in, and in what
order. Our semantics has a drop-in replacement of timestamps
for stores in the seen set (Ŝ), so we do not experience precision
loss.

Σ ∈ Store∗ Ŝ ⊆N×Context F ⊆ Context

(Ŝ, F,σ,Σ, t) ̂7−→T (Ŝ∪ Ŝ ′, F ′,σ ′,Σ ′, t ′)
where I = {(c ′,σc) | wn(c,σ) 7−→ wn(c ′,σc), c ∈ F}

σ ′ =
⊔

{σc | (_,σc) ∈ I}

(t ′,Σ ′) =

{
(t+ 1,σ ′Σ ′) if σ ′ 6= σ
(t,Σ) otherwise

F ′ = {c | (c, _) ∈ I, (c, t ′) /∈ Ŝ}
Ŝ ′ = {(c, t ′) | c ∈ F ′}

inject(e) = ({(c0, 0)}, {c0},⊥,⊥:ε, 0)

where c0 = ev (e,⊥, halt)

32 engineering engineered semantics

The observation Shivers made was that the store is increasing mono-
tonically, so all stores throughout execution will be totally ordered
(form a chain). This observation allows you to replace stores with
pointers into this chain. We keep the stores around in Σ to achieve a
complete abstraction. This corresponds to the temporal information
about the execution’s effect on the store.

Note also that F is only populated with states that have not been
seen at the resulting store. This is what produces the more precise
abstraction than the baseline widening.

The general fixed-point combinator we showed above can be spe-
cialized to this semantics, as well. In fact, ̂7−→T is a functional relation,
so we can get the least fixed-point of it directly.

Lemma 1. ̂7−→ maintains the invariant that all stores in S are totally or-
dered and σ is an upper bound of the stores in S.

Lemma 2. ̂7−→T maintains the invariant that Σ is in order with respect to
= and σ = hd(Σ).

Theorem 3. ̂7−→T is a complete abstraction of ̂7−→.

The proof follows from the order isomorphism that, in one direc-
tion, sorts all the stores in S to form Σ, and translates stores in S to
their distance from the end of Σ (their timestamp). In the other di-
rection, timestamps in Ŝ are replaced by the stores they point to in
Σ.

3.4.2 Locally log-based store deltas

The above technique requires joining entire (large) stores together.
Additionally, there is still a comparison of stores, which we estab-
lished is expensive. Not every step will modify all addresses of the
store, so joining entire stores is wasteful in terms of memory and
time. We can instead log store changes and replay the change log on
the full store after all steps have completed, noting when there is an
actual change. This uses far fewer join and comparison operations,
leading to less overhead, and is precision-preserving.

We represent change logs as ξ ∈ Store´ = (Addr × ℘(Storable))∗.
Each σ t [a 7→ vs] becomes a log addition (a, vs):ξ, where ξ begins
empty (ε) for each step. Applying the changes to the full store is
straightforward:

replay : (Store´× Store)→ (Store× Boolean)

replay([(ai, vsi), . . .] ,σ) = (σ ′, δ?(vsi,σ(ai))∨ . . .)

where σ ′ = σt [ai 7→ vsi]t . . .

δ?(vs, vs ′) = vs ′ ?
= vst vs ′

3.4 implementation techniques 33

We change the semantics slightly to add to the change log rather
than produce an entire modified store. The transition relation is iden-
tical except for the addition of this change log. We maintain the in-
variant that lookups will never rely on the change log, so we can use
the originally supplied store unmodified.

A taste of the changes to the reduction relation is as follows:

7−→σξ ⊆ (Context× Store)× (Context× Store´)

(apt`(clos (x, e, ρ),a, κ),σ) 7−→σξ (evt
′
(e, ρ ′, κ), (a ′,σ(a)):ε)

where a ′ = alloc(ς)

ρ ′ = ρ[x 7→ a ′]

We lift 7−→σξ to accommodate for the asymmetry in the input and
output, and change the frontier-based semantics in the following way:

(Ŝ, F,σ,Σ, t) ̂7−→σξ (Ŝ∪ Ŝ ′, F ′,σ ′,Σ ′, t ′)
where I = {(c ′, ξ) | (c,σ) 7−→σξ (c ′, ξ)}
(σ ′,∆?) = replay(appendall({ξ | (_, ξ) ∈ I}),σ)

(t ′,Σ ′) =

{
(t+ 1,σΣ) if ∆?

(t,Σ) otherwise

F ′ = {c | (c, _) ∈ I, (c, t ′) /∈ Ŝ}
Ŝ ′ = {(c, t ′) | c ∈ F ′}

appendall(∅) = ε
appendall({ξ}∪ Ξ) = ξ++appendall(Ξ)

Here appendall combines change logs across all non-deterministic
steps for a state to later be replayed. The order the combination hap-
pens in doesn’t matter, because join is associative and commutative.

Lemma 4. (c,σ) 7−→σξ (c ′, ξ) iff wn(c,σ) 7−→wn(c ′, replay(ξ,σ))

By cases on 7−→σξ and 7−→.

Lemma 5 (∆? means change). Let replay(ξ,σ) = (σ ′,∆?). σ ′ 6= σ iff
∆?.

By induction on ξ.

Theorem 6. ̂7−→σξ is a complete abstraction of ̂7−→T .

Follows from previous lemma and that join is associative and com-
mutative.

34 engineering engineered semantics

3.4.3 Lazy nondeterminism

Tracing the execution of the analysis reveals an immediate shortcom-
ing: there is a high degree of branching and merging in the explo-
ration. Surveying this branching has no benefit for precision. For ex-
ample, in a function application, (f x y), where f, x and y each have
several values each argument evaluation induces n-way branching,
only to be ultimately joined back together in their respective applica-
tion positions. Transition patterns of this shape litter the state-graph:

To avoid the spurious forking and joining, we delay the nondetermin-
ism until and unless it is needed in strict contexts (such as the guard of
an if, a called procedure, or a numerical primitive application). Do-
ing so collapses these forks and joins into a linear sequence of states:

This shift does not change the concrete semantics of the language
to be lazy. Rather, it abstracts over transitions that the original non-
deterministic semantics steps through. We say the abstraction is lazy
because it delays splitting on the values in an address until they are
needed in the semantics. It does not change the execution order that
leads to the values that are stored in the address.

We introduce a new kind of value, addr (a), that represents a de-
layed non-deterministic choice of a value from σ(a). The following
rules highlight the changes to the semantics:

force : Store×Value→ ℘(Value)

force(σ, addr (a)) = σ(a)

force(σ, v) = {v}

ev (x , ρ, κ,σ) 7−→L co (κ, addr (ρ(x)),σ)

co (argt`(e, ρ,aκ), v,σ) 7−→L evt
′
(e, ρ,σ ′, funt`(af,aκ))

where af = alloc(ς)

σ ′ = σt [a 7→ force(σ, v)]

co (ifkt(e0, e1, ρ,aκ), v,σ) 7−→L evt
′
(e0, ρ,σ, κ)

if κ ∈ σ(aκ), tt ∈ force(σ, v)

Since if guards are in strict position, we must force the value to
determine which branch to to take. The middle rule uses force only
to combine with values in the store - it does not introduce needless
nondeterminism.
We have two choices for how to implement lazy nondeterminism.

3.4 implementation techniques 35

option 1 : lose precision ; simplify implementation This
semantics introduces a subtle precision difference over the baseline.
Consider a configuration where a reference to a variable and a bind-
ing of a variable will happen in one step, since store widening leads to
stepping several states in one big “step.” With laziness, the reference
will mean the original binding(s) of the variable or the new binding,
because the actual store lookup is delayed one step (i.e. laziness is
administrative).

option 2 : regain precision ; complicate implementation

The administrative nature of laziness means that we could remove
the loss in precision by storing the result of the lookup in a value rep-
resenting a delayed nondeterministic choice. This is a more common
choice in 0CFA implementations we have seen, but it interferes with
the next optimization due to the invariant from store deltas we have
that lookups must not depend on the change log.

Theorem 7 (Soundness). If ς 7−→ ς ′ and ς v ς̂ then there exists a ς̂ ′ such
that ς̂ 7−→L ς̂ ′ and ς ′ v ς̂ ′

Here v is straightforward — the left-hand side store must be con-
tained in the right-hand-side store, and if values occur in the states,
the left-hand-side value must be in the forced corresponding right-
hand-side value. The proof is by cases on ς 7−→ ς ′.

3.4.4 Abstract compilation

The prior optimization saved time by doing the same amount of rea-
soning as before but in fewer transitions. We can exploit the same
idea—same reasoning, fewer transitions—with abstract compilation.
Abstract compilation transforms complex expressions whose abstract
evaluation is deterministic into “abstract bytecodes.” The abstract in-
terpreter then does in one transition what previously took many. Re-
fer back to figure 3 to see the effect of abstract compilation. In short,
abstract compilation eliminates unnecessary allocation, deallocation
and branching. The technique is precision preserving without store
widening. We discuss the precision differences with store widening
at the end of the section.

The compilation step converts expressions into functions that ex-
pect the other components of the ev state. Its definition in figure 7

shows close similarity to the rules for interpreting ev states. The next
step is to change reduction rules that create ev states to instead call
these functions. Figure 8 shows the modified reduction relation. The
only change from the previous semantics is that ev state construc-
tion is replaced by calling the compiled expression. For notational
coherence, we write λt(args . . .) for λ(args . . . , t) and kt(args . . .) for
k(args . . . , t).

36 engineering engineered semantics

J_K : Expr→ Store→ Env× Store´×Kont× Time

→ State

t ′ = tick(`, ρ,σ, t)

Jx Kσ = λt(ρ, ξ, κ).co (κ, addr (ρ(x))), ξ

Jlit (l)Kσ = λt(ρ, ξ, κ).co (κ, l), ξ

Jλ x. eKσ = λt(ρ, ξ, κ).co (κ, clos (x, JeK, ρ)), ξ

J(e0 e1)
`
Kσ = λt(ρ, ξ, κ).Je0Kt

′
σ (ρ, ξ ′, argt`(Je1K, ρ,aκ))

where aκ = allockontt`(σ, κ)

ξ ′ = (aκ, {κ}):ξ

Jif`(e0, e1, e2)Kσ = λt(ρ, ξ, κ).Je0Kt
′
σ (ρ, ξ ′, ifkt(Je1K, Je2K, ρ,aκ))

where aκ = allockontt`(σ, κ)

ξ ′ = (aκ, {κ}):ξ

Figure 7: Abstract compilation

traces(e) = {inject(JeKt0⊥ (⊥, ε, halt)) 7−→→ ς} where

inject(c, ξ) = wn(c, replay(ξ,⊥))
wn(c,σ) 7−→wn(c ′,σ ′) ⇐⇒ c J7−→Kσ c

′, ξ

ξ is such that replay(ξ,σ) = σ ′

co (argt`(k, ρ,aκ), v) J7−→Kσ k
t(σ)(ρ, ξ, funt`(af,aκ))

where af = alloc(ς)

ξ = (af, force(σ, v)):ε

co (funt`(af,aκ), v) J 7−→Kσ ap
t
`(u,a, κ), (a, force(σ, v)):ε

if u ∈ σ(af), κ ∈ σ(aκ)
co (ifkt(k0,k1, ρ,aκ), tt) J 7−→Kσ k

t
0(σ)(ρ, ε, κ) if κ ∈ σ(aκ)

co (ifkt(k0,k1, ρ,aκ), ff) J 7−→Kσ k
t
1(σ)(ρ, ε, κ) if κ ∈ σ(aκ)

apt`(clos (x,k, ρ),a, κ) J 7−→Kσ k
t ′(σ)(ρ ′, ξ, κ)

where ρ ′ = ρ[x 7→ a]

ξ = (a,σ(a)):ε

ap (o,a, κ) J 7−→Kσ co (κ,u), ε

where v ∈ σ(a),u ∈ ∆(o, v)

Figure 8: Abstract abstract machine for compiled λIF

3.4 implementation techniques 37

correctness The correctness of abstract compilation seems obvi-
ous, but it has never before been rigorously proved. What constitutes
correctness in the case of dropped states, anyway? Applying an ab-
stract bytecode’s function does many “steps” in one go, at the end
of which, the two semantics line up again (modulo representation
of expressions). This constitutes the use of a notion of stuttering. We
provide a formal analysis of abstract compilation without store widen-
ing with a proof of a stuttering bisimulation [13] between this seman-
tics and lazy nondeterminism without widening to show precision
preservation.

The number of transitions that can occur in succession from an
abstract bytecode is roughly bounded by the amount of expression
nesting in the program. We can use the expression containment or-
der to prove stuttering bisimulation with a well-founded equivalence
bisimulation (WEB) [59]. WEBs are equivalent to the notion of a stut-
tering bisimulation, but are more amenable to mechanization since
they also only require reasoning over one step of the reduction rela-
tion. The trick is in defining a well-founded ordering that determines
when the two semantics will match up again, what Manolios calls the
pair of functions erankt and erankl (but we don’t need erankl since the
uncompiled semantics doesn’t stutter).

We define a refinement, r, from non-compiled to compiled states
(built structurally) by “committing” all the actions of an ev state (de-
fined similarly to J_K, but immediately applies the functions), and
subsequently changing all expressions with their compiled variants.
Since WEBs are for single transition systems, a WEB refinement is
over the disjoint union of our two semantics, and the equivalence re-
lation we use is just that a state is related to its refined state (and
itself). Call this relation B.

Before we prove this setup is indeed a WEB, we need one lemma
that applying an abstract bytecode’s function is equal to refining the
corresponding ev state:

Lemma 8 (Compile/commit). Let c, ξ ′ = JeKtr(σ)(ρ, ξ, r(κ)). Let wn(c ′,σ ′) =
r(evt(e, ρ,σ, κ)). wn(c, replay(ξ ′,σ)) = wn(c ′, replay(ξ,σ ′)).

The proof is by induction on e.

Theorem 9 (Precision preservation). B is a WEB on 7−→L] J7−→K

The proof follows by cases on 7−→L] J7−→K with the WEB witness
being the well-order on expressions (with a ⊥ element), and the fol-
lowing erankt, erankl functions:

erankt(evt(e, ρ,σ, κ)) = e

erankt(ς) = ⊥ otherwise

erankl(s, s ′) = 0

38 engineering engineered semantics

All cases are either simple steps or appeals to the well-order on
erankt’s range. The other rank function, erankl is unnecessary, so we
just make it the constant 0 function. The J7−→K cases are trivial.

wide store and abstract compilation It is possible for dif-
ferent stores to occur between the different semantics because ab-
stract compilation can change the order in which the store is changed
(across steps). This is the case because some “corridor” expressions
may compile down to change the store before some others, mean-
ing there is no stuttering relationship with the wide lazy semantics.
Although there is a difference pre- and post- abstract compilation,
the result is still deterministic in contrast to Shivers’ technique. The
soundness is intact since we can add store-widening to the correct
unwidened semantics with an easy correctness proof. Call Ĵ7−→K the
result of the widening operator from the previous section on J7−→K.

3.4.5 Imperative, pre-allocated data structures

Thus far, we have made our optimizations in a purely functional man-
ner. For the final push for performance, we need to dip into the im-
perative. In this section, we show an alternative representation of the
store and seen set that are more space-efficient and are amenable to
destructive updates by adhering to a history for each address.

The following transfer function has several components that can be
destructively updated, and intermediate sets can be elided by adding
to global sets. In fact, the log of store deltas can be removed as well,
by updating the store in-place, and on lookup, using the first value
whose timestamp is less than or equal to the current timestamp. We
start with the purely functional view.

Pure setup for imperative implementation

The store maps to a stack of timestamped sets of abstract values.
Throughout this section, we will be taking the parameter n to be
the “current time,” or the length of the store chain at the beginning
of the step.

σ ∈ Store = Addr→ ValStack

V ∈ ValStack = (N× ℘(Storable))∗

To allow imperative store updates, we maintain an invariant that
we never look up values tagged at a time in the future:

L(V ,n) =

{
vs if V = (n ′, vs):V ′,n ′ 6 n

vs ′ if V = (n ′, vs):(n ′′, vs ′):V ′,n ′ > n

To construct this value stack, we have a time-parameterized join op-
eration that also tracks changes to the store. If joining with a time in

3.4 implementation techniques 39

J_K : Expr→N→ Env× Store×Kont× Time× Boolean

→ (℘(State)× Store× Boolean)

t ′ = tick(`, ρ,σ, t)

Jx Kn = λt(ρ,σ, κ,∆?).{co (κ, addr (ρ(x)))},σ,∆?

Jlit (l)Kn = λt(ρ,σ, κ,∆?).{co (κ, l)},σ,∆?

Jλ x. eKn = λt(ρ,σ, κ,∆?).{co (κ, clos (x, JeK, ρ))},σ,∆?

J(e0 e1)
`
Kn = λt(ρ,σ, κ,∆?).Je0Kt

′
n (ρ,σ ′, argt`(Je1K, ρ,aκ),∆?∨∆? ′)

where aκ = allockontt`(σ, κ)

σ ′,∆? ′ = σtn [aκ 7→ {κ}]

Jif`(e0, e1, e2)Kσ = λt(ρ, ξ, κ).Je0Kt
′
n (ρ,σ ′, ifkt(Je1K, Je2K, ρ,aκ),∆?∨∆? ′)

where aκ = allockontt`(σ, κ)

σ ′,∆? ′ = σtn [aκ 7→ {κ}]

Figure 9: Abstract compilation for single-threading

the future, we just add to it. Otherwise, we’re making a change for
the future (t+ 1), but only if there is an actual change.

σtn [a 7→ vs] = σ[a 7→ V],∆?

where (V ,∆?) = σ(a)tn vs
εtn vs = (n, vs), tt

(n ′, vs):V tn vs ′ = (n ′, vst vs ′):V , δ?(vs, vs ′) if n ′ > n

V tn vs = (n+ 1, vs∗):V , tt if vsn 6= vs∗

where vsn = L(σ(a),n)

vs∗ = vst vsn
V tn vs = V , ff otherwise

The abstract step is better suited for a function interpretation now
since there can be multiple output states, but only one store and ∆?.

For the purposes of space, we reuse the J7−→K semantics, although
the replay of the produced ξ objects should be in-place, and the L

function should be using this single-threaded store. Because the store
has all the temporal information baked into it, we rephrase the core
semantics in terms of a transfer function. The least fixed-point of
this function gives a more compact representation of the reduction
relation of the previous section.

40 engineering engineered semantics

force : Store×Value×N→ ℘(Value)

force(σ, addr (a),n) = L(σ(a),n)

force(σ, v,n) = {v}

J 7−→!Kn
σ,∆?(co (argt`(k, ρ,aκ), v)) = kt(n)(ρ,σ ′, funt`(af,aκ),∆?∨∆?

′)

where af = alloc(ς)

σ ′,∆? ′ = σtn [af 7→ force(σ, v,n)]

J7−→!Kn
σ,∆?(co (funt`(af,aκ), v)) = apt`(u,a, κ),σ ′,∆?∨∆? ′

if u ∈ L(σ(af),n), κ ∈ L(σ(aκ),n)

where σ ′,∆? ′ = σtn [a 7→ force(σ, v,n)]

J 7−→!Kn
σ,∆?(co (ifkt(k0,k1, ρ,aκ), tt)) = kt0(n)(ρ,σ, κ,∆?) if κ ∈ L(σ(aκ),n)

J 7−→!Kn
σ,∆?(co (ifkt(k0,k1, ρ,aκ), ff)) = kt1(n)(ρ,σ, κ,∆?) if κ ∈ L(σ(aκ),n)

J7−→!Kn
σ,∆?(ap

t
`(clos (x,k, ρ),a, κ)) = kt

′
(n)(ρ ′,σ ′, κ,∆?∨∆? ′)

where ρ ′ = ρ[x 7→ a]

σ ′,∆? ′ = σtn [a 7→ L(σ(a),n)]

J 7−→!Kn
σ,∆?(ap (o,a, κ)) = S,σ,∆?

where S = {co (κ,u) : v ∈ L(σ(a),n),u ∈ ∆(o, v)}

Figure 10: Abstract abstract machine for compiled single-threaded λIF

3.4 implementation techniques 41

System = (Ŝtate→N∗)× ℘(Ŝtate)× Store×N

F : System→ System

F(Ŝ, F,σ, t) = (Ŝ ′, F ′,σ ′, t ′)

where I = {(c ′, ξ) | c ∈ F, c J 7−→Kσ∗ c
′, ξ}

σ∗ = λa.L(σ(a), t)

(σ ′,∆?) = replay(appendall({ξ | (_, ξ) ∈ I}),σ)

t ′ =

{
t+ 1 if ∆?

t otherwise

F ′ = {c | (c, _) ∈ I,∆?∨ Ŝ(c) 6= t:_}

Ŝ ′ = λc.

{
t ′:Ŝ(c) if c ∈ F ′

Ŝ(c) otherwise

We prove semantic equivalence with the previous semantics with
a lock-step bisimulation with the stack of stores abstraction, which
follow by equational reasoning from the following lemmas:

Lemma 10. Stores of value stacks completely abstract stacks of stores.

This depends on some well-formedness conditions about the order
of the stacks. The store of value stacks can be translated to a stack
of stores by taking successive “snapshots” of the store at different
timestamps from the max timestamp it holds down to 0. Vice versa,
we replay the changes across adjacent stores in the stack.

We apply a similar construction to the different representation of
seen states in order to get the final result:

Theorem 11. F is a complete abstraction of Ĵ7−→K.

Pure to imperative

The intermediate data structures of the above transfer function can
all be streamlined into globals that are destructively updated. In par-
ticular, there are 5 globals:

1. Ŝ: the seen set, though made a map for faster membership tests
and updates.

2. F: the frontier set, which must be persisent or copied for the
iteration through the set to be correct.

3. σ: the store, which represents all stores that occur in the ma-
chine semantics.

4. n: the timestamp, or length of the store chain.

5. ∆?: whether the store changed when stepping states in F.

42 engineering engineered semantics

The reduction relation would then instead of building store deltas,
update the global store. We would also not view it as a general re-
lation, but a function that adds all next states to F if they have not
already been seen. At the end of iterating through F, Ŝ is updated
with the new states at the next timestamp. There is no cross-step
store poisoning since the lookup is restricted to the current step’s
time, which points to the same value throughout the step.

Pre-allocating the store

Internally, the algorithm at this stage uses hash tables to model the
store to allow arbitrary address representations. But, such a dynamic
structure isn’t necessary when we know the structure of the store in
advance.

In a monovariant allocation strategy, the domain of the store is
bounded by the number of expressions in the program. If we label
each expression with a unique natural, the analysis can index directly
into the store without a hash or a collision. Even for polyvariant
analyses, it is possible to compute the maximum number of addresses
and similarly pre-allocate either the spine of the store or (if memory
is no concern) the entire store.

3.5 evaluation

I implemented, optimized, and evaluated12 an analysis framework12 Precision
evaluation credit
goes to Nicholas

Labich

supporting higher-order functions, state, first-class control, compound
data, and a large number of primitive kinds of data and operations
such as floating point, complex, and exact rational arithmetic. The
analysis is evaluated against a suite of Scheme benchmarks drawn
from the literature1. For each benchmark, I collect analysis times,
peak memory usage (as determined by Racket’s GC statistics), and
the rate of states-per-second explored by the analysis for each of the
optimizations discussed in section 3.4, cumulatively applied. The
analysis is stopped after consuming 30 minutes of time or 1 gigabyte
of space 2. When presenting relative numbers, we use the timeout
limits as a lower bound on the actual time required (i.e., one minute
versus timeout is at least 30 times faster), thus giving a conservative
estimate of improvements.

For those benchmarks that did complete on the baseline, the opti-
mized analyzer outperformed the baseline by a factor of two to three
orders of magnitude.

I used the following set of benchmarks:

1 Source code of the implementation and benchmark suite available at https://
github.com/dvanhorn/oaam

2 All benchmarks are calculated as an arithmetic mean of 5 runs on a Linux 3.16

machine with Intel Core i7-3770K CPU / 32GB of memory

https://github.com/dvanhorn/oaam
https://github.com/dvanhorn/oaam

3.5 evaluation 43

Program LOC Time (sec) Space (MB) Speed state
sec

nucleic 3492 m 34.8± 0.4 m 188± 3.5 204± 4 15± 0K
matrix 747 t 1.7± 0.0 569± 5.3 75± 0.0 403± 4 174± 3K
nbody 1435 t 10.7± 0.1 608± 0.6 123± 0.0 528± 4 129± 2K
earley 667 297.1± 7.0 0.2± 0.0 329± 0.2 63± 0.0 964± 22 175± 4K
maze 693 t 1.6± 0.0 626± 0.4 75± 0.0 474± 7 205± 3K
church 42 13.5± 0.2 0.1± 0.0 85± 0.0 62± 0.0 2± 0K 108± 2K
lattice 214 111.7± 2.5 0.1± 0.0 194± 0.1 62± 0.0 1± 0K 194± 2K
boyer 642 m 7.0± 0.2 m 102± 0.0 132± 2 76± 2K
mbrotZ 69 130.5± 4.9 0.0± 0.0 231± 0.1 62± 0.0 2± 0K 120± 2K
Figure 11: Overview performance comparison between baseline and opti-

mized analyzer (entries of t mean timeout, and m mean out of
memory). Error is standard deviation rounded to 2 significant
figures.

1. nucleic: a floating-point intensive application taken from molec-
ular biology that has been used widely in benchmarking func-
tional language implementations [41] and analyses (e.g. [105,
43]). It is a constraint satisfaction algorithm used to determine
the three-dimensional structure of nucleic acids.

2. matrix tests whether a matrix is maximal among all matrices
of the same dimension obtainable by simple reordering of rows
and columns and negation of any subset of rows and columns.
It is written in continuation-passing style (used in [105, 43]).

3. nbody: implementation [106] of the Greengard multipole algo-
rithm for computing gravitational forces on point masses dis-
tributed uniformly in a cube (used in [105, 43]).

4. earley: Earley’s parsing algorithm, applied to a 15-symbol input
according to a simple ambiguous grammar. A real program, ap-
plied to small data whose exponential behavior leads to a peak
heap size of half a gigabyte or more during concrete execution.

5. maze: generates a random maze using Scheme’s call/cc oper-
ation and finds a path solving the maze (used in [105, 43]).

6. church: tests distributivity of multiplication over addition for
Church numerals (introduced by [103]).

7. lattice: enumerates the order-preserving maps between two fi-
nite lattices (used in [105, 43]).

8. boyer: a term-rewriting theorem prover (used in [105, 43]).

9. mbrotZ: generates Mandelbrot fractal using complex numbers.

44 engineering engineered semantics

10. graphs: counts the number of directed graphs with a distin-
guished root and k vertices, each having out-degree at most 2.
It is written in a continuation-passing style and makes extensive
use of higher-order procedures—it creates closures almost as of-
ten as it performs non-tail procedure calls (used by [105, 43]).

Figure 11 gives an overview of the benchmark results in terms of
absolute time, space, and speed between the baseline and most opti-
mized analyzer. Figure 12 plots the factors of improvement over the
baseline for each optimization step. The error bars are the normalized
mean errors of the respective benchmark. For example, if comparing
baseline over current, say with respective means and standard devia-
tions of µb, σb, µc, σc, then the error is

µb
c
=
µb
µc
·
(
σb
µb

+
σc

µc

)
.

If b times out (respectively runs out of memory), then its fraction
in the error is 0, and µb is the timeout length (respectively memory
limit).

To determine the impact of each section’s technique on precision,
we evaluated a singleton variable analysis to find opportunities to
inline constants and closed functions. We found no change in the
results across all implementations, including Shivers’ timestamp ap-
proximation – from an empirical point of view, these techniques are
precision preserving despite the theoterical loss of precision.

Our step-wise optimizations strictly produce better analysis times
with no observed loss of precision. The final result is a systemat-
ically derived and verified implementation that operates within a
small factor performance loss compared to a hand-optimized, un-
verified implementation. Moreover, much of the performance gains
are achieved with purely functional methods, which allow the use
of these methods in rewriting tools and others with restricted input
languages. Peak memory usage is considerably improved by the end
of the optimization steps.

comparison with other flow analysis implementations

The analysis considered here computes results similar to Earl, et al.’s
0CFA implementation [29], which times out on the Vardoulakis and
Shivers benchmark because it does not widen the store as described
for our baseline evaluator. So even though it offers a fair point of
comparison, a more thorough evaluation is probably uninformative
as the other benchmarks are likely to timeout as well (and it would
require significant effort to extend their implementation with the fea-
tures needed to analyze our benchmark suite). That implementation
is evaluated against much smaller benchmarks: the largest program
is 30 lines.

3.5 evaluation 45

§3§3§3§3§3§3§3§3§3 §4.1§4.1§4.1§4.1§4.1§4.1§4.1§4.1§4.1 §4.2§4.2§4.2§4.2§4.2§4.2§4.2§4.2§4.2 §4.3§4.3§4.3§4.3§4.3§4.3§4.3§4.3§4.3 §4.4§4.4§4.4§4.4§4.4§4.4§4.4§4.4§4.4 §4.5.3§4.5.3§4.5.3§4.5.3§4.5.3§4.5.3§4.5.3§4.5.3§4.5.3
111111111

10¹10¹10¹10¹10¹10¹10¹10¹10¹

10²10²10²10²10²10²10²10²10²

10³10³10³10³10³10³10³10³10³

10⁴10⁴10⁴10⁴10⁴10⁴10⁴10⁴10⁴

111111111

10¹10¹10¹10¹10¹10¹10¹10¹10¹

10²10²10²10²10²10²10²10²10²

10³10³10³10³10³10³10³10³10³

10⁴10⁴10⁴10⁴10⁴10⁴10⁴10⁴10⁴
churchchurchchurchchurchchurchchurchchurchchurchchurch
mazemazemazemazemazemazemazemazemaze
nucleicnucleicnucleicnucleicnucleicnucleicnucleicnucleicnucleic
boyerboyerboyerboyerboyerboyerboyerboyerboyer
matrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrix
latticelatticelatticelatticelatticelatticelatticelatticelattice
earleyearleyearleyearleyearleyearleyearleyearleyearley
mbrotZmbrotZmbrotZmbrotZmbrotZmbrotZmbrotZmbrotZmbrotZ
nbodynbodynbodynbodynbodynbodynbodynbodynbody
graphsgraphsgraphsgraphsgraphsgraphsgraphsgraphsgraphs

(a) Total analysis time speed-up (baseline / optimized)

§3§3§3§3§3§3§3§3§3 §4.1§4.1§4.1§4.1§4.1§4.1§4.1§4.1§4.1 §4.2§4.2§4.2§4.2§4.2§4.2§4.2§4.2§4.2 §4.3§4.3§4.3§4.3§4.3§4.3§4.3§4.3§4.3 §4.4§4.4§4.4§4.4§4.4§4.4§4.4§4.4§4.4 §4.5.3§4.5.3§4.5.3§4.5.3§4.5.3§4.5.3§4.5.3§4.5.3§4.5.3

111111111

10¹10¹10¹10¹10¹10¹10¹10¹10¹

10²10²10²10²10²10²10²10²10²

10³10³10³10³10³10³10³10³10³

111111111

10²10²10²10²10²10²10²10²10²

churchchurchchurchchurchchurchchurchchurchchurchchurch
mazemazemazemazemazemazemazemazemaze
nucleicnucleicnucleicnucleicnucleicnucleicnucleicnucleicnucleic
boyerboyerboyerboyerboyerboyerboyerboyerboyer
matrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrix
latticelatticelatticelatticelatticelatticelatticelatticelattice
earleyearleyearleyearleyearleyearleyearleyearleyearley
mbrotZmbrotZmbrotZmbrotZmbrotZmbrotZmbrotZmbrotZmbrotZ
nbodynbodynbodynbodynbodynbodynbodynbodynbody
graphsgraphsgraphsgraphsgraphsgraphsgraphsgraphsgraphs

(b) Rate of state transitions speed-up (optimized / baseline)

§3§3§3§3§3§3§3§3§3 §4.1§4.1§4.1§4.1§4.1§4.1§4.1§4.1§4.1 §4.2§4.2§4.2§4.2§4.2§4.2§4.2§4.2§4.2 §4.3§4.3§4.3§4.3§4.3§4.3§4.3§4.3§4.3 §4.4§4.4§4.4§4.4§4.4§4.4§4.4§4.4§4.4 §4.5.3§4.5.3§4.5.3§4.5.3§4.5.3§4.5.3§4.5.3§4.5.3§4.5.3
000000000

2.52.52.52.52.52.52.52.52.5

555555555

7.57.57.57.57.57.57.57.57.5

101010101010101010

000000000

2.52.52.52.52.52.52.52.52.5

555555555

7.57.57.57.57.57.57.57.57.5

101010101010101010
churchchurchchurchchurchchurchchurchchurchchurchchurch
mazemazemazemazemazemazemazemazemaze
nucleicnucleicnucleicnucleicnucleicnucleicnucleicnucleicnucleic
boyerboyerboyerboyerboyerboyerboyerboyerboyer
matrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrix
latticelatticelatticelatticelatticelatticelatticelatticelattice
earleyearleyearleyearleyearleyearleyearleyearleyearley
mbrotZmbrotZmbrotZmbrotZmbrotZmbrotZmbrotZmbrotZmbrotZ
nbodynbodynbodynbodynbodynbodynbodynbodynbody
graphsgraphsgraphsgraphsgraphsgraphsgraphsgraphsgraphs

(c) Peak memory usage inverse factor (peak baseline / peak optimized)
Figure 12: Factors of improvement over baseline for each step of optimization (bigger is better).

46 engineering engineered semantics

Vardoulakis and Shivers evaluate their CFA2 analyzer [103] against
a variant of 0CFA defined in their framework and the example we
draw on is the largest benchmark Vardoulakis and Shivers consider.
More work would be required to scale the analyzer to the set of fea-
tures required by our benchmarks.

The only analyzer we were able to find that proved capable of an-
alyzing the full suite of benchmarks considered here was the Poly-
morphic splitting system of Wright and Jagannathan [105] 3. Unfor-
tunately, these analyses compute an inherently different and incom-
parable form of analysis via a global acceptability judgment. Conse-
quently, we have omitted a complete comparison with these imple-
mentations. The AAM approach provides more precision in terms of
temporal-ordering of program states, which comes at a cost that can
be avoided in constraint-based approaches. Consequently implemen-
tation techniques cannot be “ported” between these two approaches.
However, our optimized implementation is within an order of mag-
nitude of the performance of Wright and Jaganathan’s analyzer. The
optimized AAM approach of this chapter still has many strengths to
recommend it in terms of precision, ease of implementation and veri-
fication, and rapid design. We can get closer to their performance by
relying on the representation of addresses and the behavior of alloc
to pre-allocate most data structures and split the abstract store out
into parts that are more quickly accessed and updated. Our seman-
tic optimizations can still be applied to an analysis that does abstract
garbage collection [66], whereas the polymorphic splitting implemen-
tation is tied strongly to a single-threaded store.

3 This is not a coincidence; these papers set a high standard for evaluation, which we
consciously aimed to approach.

4
P U S H D O W N A N A LY S I S V I A R E L E VA N T
A L L O C AT I O N

Programs in higher-order languages heavily use function calls and
method dispatch for control flow. Standard flow analyses’ impre-
cise handling of returns damages all specific analyses’ precision. Re-
cent techniques match calls and returns precisely [103, 28] and build
smaller models more quickly than a standard 0CFA(evaluation pre-
dicted 2-5 times more constant bindings). These works, called CFA2

and PDCFA respectively, use pushdown automata as their approxi-
mation’s target model of computation. They are hence called “push-
down analyses.”1 CFA2 and PDCFA have difficult details to easily ap-
ply to an off-the-shelf semantics—especially if they feature non-local
control transfer that breaks the pushdown model.

The AAM method we discussed in Chapter 2 and Chapter 3 is a
process to construct regular analyses. This chapter describes a sys-
tematic process to construct pushdown analyses of programming lan-
guages, due to the precision benefits.

4.1 tradeoffs of approximation strength

Static analysis is the process of soundly predicting properties of pro-
grams. It necessarily involves a tradeoff between the precision of
those predictions and the computational complexity of producing
them. At one end of the spectrum, an analysis may predict noth-
ing, using no resources. At the other end, an analysis may predict
everything, at the cost of computability.

Abstract interpretation [20] is a form of static analysis that involves
the approximate running of a program by interpreting a program over
an abstraction of the program’s values, e.g. by using intervals in
place of integers [19], or types instead of values [56]. By considering
the sound abstract interpretation of a program, it is possible to pre-
dict the behavior of concretely running the program. For example, if
abstract running a program never causes a buffer-overflow, run-time
type error, or null-pointer dereference, we can conclude actually run-
ning the program can never cause any of these errors either. If a
fragment of code is not executed during the abstract running, it can
safely be deemed dead-code and removed. More fine-grained proper-
ties can be predicted too; to enable inlining, the abstract running of a
program can identify all of the functions that are called exactly once

1 I refer to finite model analyses as “regular analyses” after the regular languages of
traces they realize.

47

48 pushdown analysis via relevant allocation

and the corresponding call-site. Temporal properties can be discov-
ered as well: perhaps we want to determine if one function is always
called before another, or if reads from a file occur within the opening
and closing of it.

In general, we can model the abstract running of a program by
considering each program state as a node in a graph, and track evo-
lution steps as edges, where each node and path through the graph
is an approximation of concrete program behavior. The art and sci-
ence of static analysis design is the way we represent this graph of
states; how little or how much detail we choose to represent in each
state determines the precision and, often, the cost of such an analysis.
First-order data-structures, numbers, arrays all have an abundance
of literature for precise and effective approximations, so this paper
focuses on higher-order data: closures and continuations, and their
interaction with state evolution.

A major issue with designing a higher-order abstract interpreter
is approximating closures and continuations in such a way that the
interpreter always terminates while still producing sound and precise
approximations. Traditionally, both have been approximated by finite
sets, but in the case of continuations, this means the control stack of
the abstract interpreter is modeled as a finite graph and therefore
cannot be precise with regards to function calls and returns.

why pushdown return flow matters : an example Higher-
order programs often create proxies, or monitors, to ensure an object
or function interacts with another object or function in a sanitized
way. One example of this is behavioral contracts [34]. Simplified,
here is how one might write an ad-hoc contract monitor for a given
function and predicates for its inputs and outputs:

(define (monitor f in? out?)
 (λ (x)

(if (in? x)
(let ([r (f x)])
 (if (out? r)

r
(blame 'function)))

(blame 'user))))

It is well known that wrapping functions like this thwarts the pre-
cision of regular 0CFA and higher kCFA as more wrappings are in-
troduced. In the case of this innocent program

(cons (map (monitor render-int int? str?) ℓ)
(map (monitor fact int? int?) ℓ))

according to 0CFA the call to the wrapped factorial function
within the second map may return to within the first map. Hence 0CFA
is not sufficiently precise to prove factorial cannot be blamed. Us-
ing more a context-sensitive analysis such as 1CFA, 2CFA, etc., would

4.2 refinement of aam for exact stacks 49

solve the problem for this example, but would fail for nested proxies.
In general, for any k, kCFA will confuse the return flow of some pro-
grams as in this example. Yet, a pushdown abstraction that properly
matches calls and returns has no trouble with this example, regard-
less of proxy-nesting depth.

a systematic approach to pushdown analysis At this point,
several pushdown analyses for higher-order languages have been de-
veloped [100, 28], and the basic idea is simple: instead of approximat-
ing a program with a finite state machine, use a pushdown automata.
The control stack of the automata models the control stack of the
concrete interpreter, while stack frames, which contain closures, are
subject to the same abstraction as values in the program.

This approach works well for simple languages which obey the
stack discipline of a PDA. But most languages provide features that
transgress that discipline, such as garbage collection, first-class con-
trol operators, stack inspection, and so on. Some of these features
have been successfully combined with pushdown analysis, but re-
quired technical innovation and effort [101, 38, 29]. To avoid further
one-off efforts, we develop a general technique for creating push-
down analyses for languages with control operators and reflective
mechanisms.

4.2 refinement of aam for exact stacks

We can exactly represent the stack in the CESK∗t machine with a mod-
ified allocation scheme for stacks. The key idea is that if the address
is “precise enough,” then every path that leads to the allocation will
proceed exactly the same way until the address is dereferenced.

“precise enough”: For the CESK∗t machine, every function eval-
uates the same way, regardless of the stack. We should then repre-
sent the stack addresses as the components of a function call. The
one place in the CESK∗t machine that continuations are allocated is at
(e0 e1) evaluation. The expression itself, the environment, the store
and the timestamp are necessary components for evaluating (e0 e1),
so then we just represent the stack address as those four things. The
stack is not relevant for its evaluation, so we do not want to store the
stack addresses in the same store – that would also lead to a recursive
store structure. I call this new table Ξ, because it looks like a stack.

By not storing the continuations in the value store, we separate
“relevant” components from “irrelevant” components. We split the
stack store from the value store and use only the value store in stack
addresses. Stack addresses generally describe the relevant context

50 pushdown analysis via relevant allocation

ς̂ ,Ξ 7−→ ς̂ ′,Ξ ′ a = alloc(ς̂ ,Ξ) u = tick(ς̂ ,Ξ)

〈x, ρ,σ, κ̂〉t,Ξ 〈v,σ, κ̂〉u,Ξ if v ∈ σ(ρ(x))
〈(e0 e1), ρ,σ, κ̂〉t,Ξ 〈e0, ρ,σ, appL(e1, ρ):τ〉u,Ξ ′

where τ = 〈(e0 e1), ρ,σ〉t
Ξ ′ = Ξt [τ 7→ κ̂]

〈v,σ, appL(e, ρ ′):τ〉t,Ξ 〈e, ρ ′,σ, appR(v):τ〉u,Ξ

〈v, ρ,σ, appR(λ x. e, ρ ′):τ〉t,Ξ 〈e, ρ ′′,σ ′, κ̂〉u,Ξ if κ̂ ∈ Ξ(τ)
where ρ ′′ = ρ ′[x 7→ a]

σ ′ = σt [a 7→ v]

Figure 13: CESK∗tΞ semantics

that lead to their allocation, so we will refer to them henceforth as
contexts. The resulting state space is updated here:

Ŝtate = ĈESKt ×KStore

κ ∈ Kont ::= ε | φ:τ overloads K in ĈESKt
τ ∈ Context ::= 〈e, ρ,σ〉t
Ξ ∈ KStore = Context ⇀

fin
℘(Kont)

The semantics is modified slightly in Figure 13 to use Ξ instead
of σ for continuation allocation and lookup. Given finite allocation,
contexts are drawn from a finite space, but are still precise enough
to describe an unbounded stack: they hold all the relevant compo-
nents to find which stacks are possible. The computed 7−→ relation
thus represents the full description of a pushdown system of reach-
able states (and the set of paths). Of course this semantics does not
always define a pushdown system since alloc can have an unbounded
codomain. The correctness claim is therefore a correspondence be-
tween the same machine but with an unbounded stack, no Ξ, and
alloc, tick functions that behave the same disregarding the different
representations (a reasonable assumption).

4.2.1 Correctness

The high level argument for correctness exploits properties of both
machines. Where the stack is unbounded (call this CESKt), if every
state in a trace shares a common tail in their continuations, that tail
is irrelevant. This means the tail can be replaced with anything and
still produce a valid trace. This property is more generally, “context
irrelevance.” The CESK∗tΞ machine maintains an invariant on Ξ that
says that κ̂ ∈ Ξ(τ) represents a trace in CESKt that starts at the base
of κ̂ and reaches τ with κ̂ on top. We can use this invariant and con-
text irrelevance to translate steps in the CESK∗tΞmachine into steps in

4.2 refinement of aam for exact stacks 51

CESKt. The other way around, we use a proposition that a full stack
is represented by Ξ via unrolling and follow a simple simulation ar-
gument.

The common tail proposition we will call ht and the replacement
function we will call rt; they both have obvious inductive and recur-
sive definitions respectively. The invariant is stated with respect to
the entire program, epgm:

invΞ(⊥)
invΞ(Ξ) ∀κ̂c ∈ K.base(κ̂c) 7−→∗CESKt

〈ec, ρc,σc, κ̂c++ε〉tc
invΞ(Ξ[〈ec, ρc,σc〉tc 7→ K])

base(κ̂) 7−→∗CESKt
〈e, ρ,σ, κ̂++ε〉t invΞ(Ξ)

inv(〈e, ρ,σ, κ̂〉t,Ξ)

where

base(ε) = 〈epgm,⊥,⊥, ε〉t0
base(φ:〈ec, ρc,σc〉tc) = 〈ec, ρc,σc, ε〉tc

We use ·++ε to treat τ like ε and construct a continuation in Kont
rather than K̂ont.

Lemma 12 (Context irrelevance). For all traces π ∈ CESKt
∗ and contin-

uations κ such that ht(π, κ), for any κ ′, rt(π, κ, κ ′) is a valid trace.

Proof. Simple induction on π and cases on 7−→CESKt .

Lemma 13 (CESK∗tΞ Invariant). For all ς , ς ′ ∈ Ŝtate, if inv(ς) and ς 7−→
ς ′, then inv(ς ′)

Proof. Routine case analysis.

Note that the injection of epgm into CESK∗tΞ, (〈epgm,⊥,⊥, ε〉t0 ,⊥),
trivially satisfies inv.

The unrolling proposition is the following

ε ∈ unrollΞ(ε)

κ̂ ∈ Ξ(τ), κ ∈ unrollΞ(κ̂)

φ:κ ∈ unrollΞ(φ:τ)

Theorem 14 (Correctness). For all expressions epgm,

• Soundness: if ς 7−→CESKt ς
′, inv(ς{κ := κ̂},Ξ), and κ ∈ unrollΞ(κ̂),

then there are Ξ ′, κ̂ ′ such that ς{κ := κ̂},Ξ 7−→CESK∗tΞ ς ′{κ := κ̂ ′},Ξ ′

and κ ′ ∈ unrollΞ ′(κ̂ ′)

• Local completeness: if ς̂ ,Ξ 7−→CESK∗tΞ ς̂ ′,Ξ ′ and inv(ς̂ ,Ξ), for all
κ, if κ ∈ unrollΞ(ς̂ .κ̂) then there is a κ ′ such that ς̂{κ̂ := κ} 7−→CESKt

ς̂ ′{κ̂ := κ ′} and κ ′ ∈ unrollΞ(ς̂ ′.κ̂).

52 pushdown analysis via relevant allocation

The completeness result is “local” because it only applies to trace
slices, and not entire traces - some starts of traces may not be reach-
able. As a mode of running, however, there will be no spuriously
added states due to the short-circuiting via the memo-use rule. I
conjecture full completeness (all traces with Ξ are reachable traces in
the stack model) is attainable by adding the calling expression to the
representation of a context. By adding the calling expression, there
should be an invariant that the range of Ξ is always singleton sets.
Thanks to Jens Nicolay for pointing out the incompleteness for traces
in the concrete.

revisiting the example First we consider what 0CFA gives us,
to see where pushdown analysis improves. The important difference
is that in kCFA, return points are stored in an address that is linked
to the textual location of the function call, plus a k-bounded amount
of calling history. So, considering the common k = 0, the unknown
function call within map (either render-int or fact) returns from
the context of the second call to map to the context of the first call
to map. Non-tail calls aren’t safe from imprecise return flow: the
recursive call to map returns directly to both calls in the outer cons.
All nonsense.

In our presentation, return points are stored in an address that rep-
resents the exact calling context with respect to the abstract machine’s
components. This means when there is a “merging” of return points,
it really means that two places in the program have requested the ex-
act same thing of a function, even with the same global values. The
function will return to both places. The predicted control flow in the
example is as one would expect, or hope, an analysis would predict:
the correct flow.

4.2.2 Engineered semantics for efficiency

I cover three optimizations that may be employed to accelerate the
fixed-point computation.

1. Continuations can be “chunked” more coarsely at function bound-
aries instead of at each frame in order to minimize table lookups.

2. We can globalize Ξ with no loss in precision, unlike a global
store; it will not need to be stored in the frontier but will need to
be tracked by seen states. The seen states only need comparison,
and a global Ξ increases monotonically, so we can use Shivers’
timestamp technique [87]. The timestamp technique does not
store an entire Ξ in the seen set at each state, but rather how
many times the global Ξ has increased.

3. Since evaluation is the same regardless of the stack, we can
memoize results to short-circuit to the answer. The irrelevance

4.2 refinement of aam for exact stacks 53

ς̂ ∈ ĈESIK = 〈e, ρ,σ, ι, κ̂〉 ι ∈ LKont = Frame∗

κ̂ ∈ Kont ::= ε | τ

Figure 14: CESIK∗Ξ semantic spaces

of the stack then precludes the need for timestamping the global
Ξ.

This last optimization will be covered in more detail in Section 4.5.
From here on, this chapter will not explicitly mention timestamps.

A secondary motivation for the representation change in 1 is that
flow analyses commonly split control-flow graphs at function call
boundaries to enable the combination of intra- and inter-procedural
analyses. In an abstract machine, this split looks like installing a
continuation prompt at function calls. We borrow a representation
from literature on delimited continuations [8] to split the continua-
tion into two components: the continuation and meta-continuation.
Our delimiters are special since each continuation “chunk” until the
next prompt has bounded length. The bound is roughly the deepest
nesting depth of an expression in functions’ bodies. Instead of “con-
tinuation” and “meta-continuation” then, I will use terminology from
CFA2 and call the top chunk a “local continuation,” and the rest the
“continuation.”13 13 Since the

continuation is
either ε or a context,
CFA2 calls these
“entries” to mean
execution entry into
the program (ε) or a
function (τ). One
can also understand
these as entries in a
table (Ξ). I stay with
the “continuation”
nomenclature
because they
represent full
continuations.

Figure 15 has a visualization of a hypothetical state space. Reduc-
tion relations can be thought of as graphs: each state is a node, and if
a state ς reduces to ς ′, then there is an edge ς 7−→ ς ′. We can also view
our various environments that contain pointers (addresses, contexts)
as graphs: each pointer is a node, and if the pointer τ references an
object ι that contains another pointer τ ′, then there is a labeled edge
τ
ι−→ τ ′. States’ contexts point into Ξ to associate each state with a reg-

ular language of continuations. The reversed Ξ graph can be read as
a collection of finite state machines that accepts all the continuations
that are possible at each state that the reversed pointers lead to. The
halt continuation is this graph’s starting state.

The resulting shuffling of the semantics to accommodate this new
representation is in Figure 16. The extension to Ξ happens in a dif-
ferent rule – function entry – so the shape of the context changes to
hold the function, argument, and store. We have a choice of whether
to introduce an administrative step to dereference Ξ once ι is empty,
or to use a helper metafunction to describe a “pop” of both ι and κ.
Suppose we choose the second because the resulting semantics has a
1-to-1 correspondence with the previous semantics. A first attempt
might land us here:

pop(φ:ι, κ̂,Ξ) = {(φ, ι, κ̂)}

pop(ε, τ,Ξ) = {(φ, ι, κ̂) : (φ:ι, κ̂) ∈ Ξ(τ)}

However, tail calls make the dereferenced τ lead to (ε, τ ′). Because
abstraction makes the store grow monotonically in a finite space, it’s

54 pushdown analysis via relevant allocation

τ
mt

τ'

τ''

ι
ι'

ι''τ'''

...

ς'ς ⟼
States

KStore
Figure 15: Graph visualization of states and Ξ

possible that τ ′ = τ and a naive recursive definition of pop will di-
verge chasing these contexts. Now pop must save all the contexts it
dereferences in order to guard against divergence. So pop(ι, κ̂,Ξ) =

pop∗(ι, κ̂,Ξ, ∅) where

pop∗(ε, ε,Ξ,G) = ∅
pop∗(φ:ι, κ̂,Ξ,G) = {(φ, ι, κ̂)}

pop∗(ε, τ,Ξ,G) = {(φ, ι, κ̂) : (φ:ι, κ̂) ∈ Ξ(τ)}

∪
⋃
τ ′∈G ′

pop∗(ε, τ ′,Ξ,G∪G ′)

where G ′ = {τ ′ : (ε, τ ′) ∈ Ξ(τ)} \G

In practice, one would not expect G to grow very large. Had
we chosen the first strategy, the issue of divergence is delegated to
the machinery from the fixed-point computation.2 However, when
adding the administrative state, the “seen” check requires searching
a far larger set than we would expect G to be.

We run the the stepping relation along all nondeterministic paths.
The continuation table can be global and use the same counting mech-
anism we used for the global stores in Chapter 3, without loss of pre-
cision. For ease of exposition, I will keep a map from state without Ξ
to largest Ξ at which it has been seen. The fixed point computation
thus computes over the following system:

Ŝystem = (ĈESKt ⇀
fin

KStore)× ℘(ĈESK
2

t)× ℘(ĈESKt)×KStore

We compute all next steps from the frontier, combine all changes to
Ξ, and continue with a new frontier of states we stepped to that we
haven’t seen at the current Ξ.

2 CFA2 employs the first strategy and calls it “transitive summaries.”

4.2 refinement of aam for exact stacks 55

ς̂ ,Ξ 7−→ ς̂ ′,Ξ ′ a = alloc(ς̂ ,Ξ)

〈x, ρ,σ, ι, κ̂〉,Ξ 〈v,σ, ι, κ̂〉,Ξ if v ∈ σ(ρ(x))
〈(e0 e1), ρ,σ, ι, κ̂〉,Ξ 〈e0, ρ,σ, appL(e1, ρ):ι, κ̂〉,Ξ

〈v,σ, ι, κ̂〉,Ξ 〈e, ρ ′,σ, appR(v, ρ):ι ′, κ̂ ′〉,Ξ
if appL(e, ρ ′), ι ′, κ̂ ′ ∈ pop(ι, κ̂,Ξ)

〈v,σ, ι, κ̂〉,Ξ 〈e, ρ[x 7→ a],σ ′, ε, τ〉,Ξ ′

if appR(λ x. e, ρ), ι ′, κ̂ ′ ∈ pop(ι, κ̂,Ξ)

where σ ′ = σt [a 7→ v]

τ = (〈λ x. e, ρ〉, v,σ)
Ξ ′ = Ξt [τ 7→ (ι, κ̂)]

Figure 16: CESIK∗Ξ semantics

Fe(S,R, F,Ξ) = (S / S ′,R∪ R ′, F ′,Ξ ′)

I =
⋃
ς̂∈F

{(〈ς̂ , ς̂ ′〉,Ξ ′) : ς̂ ,Ξ 7−→ ς̂ ′,Ξ ′}

R ′ = π0I Ξ ′ =
⊔
π1I

S ′ = [ς̂ 7→ Ξ ′ : ς̂ ∈ π1(R ′)]
F ′ = {ς̂ ∈ dom(S ′) : S ′(ς̂) 6= S(ς̂)}

For a program e, we will say (⊥, ∅, {〈e,⊥,⊥, ε, ε〉},⊥) is the bottom
element of Fe’s domain. The “analysis” then is then the pair of the R
and Ξ components of lfp(Fe).

correctness The correctness argument for this semantics is not
about single steps but instead about the entire relation that F com-
putes. The argument is that the R and Ξ components of the sys-
tem represent a slice of the unbounded relation 7−→CESKt (restricted
to reachable states). We will show that traces in any n ∈ N times
we unfold 7−→CESKt from the initial state, there is a corresponding m
applications of F that reify into a relation that exhibit the same trace.
Conversely, any trace in the reification of Fme (⊥) has the same trace in
some n unfoldings of 7−→CESKt . For an arbitrary alloc function, we can-
not expect F to have a fixed point, so this property is the best we can
get. For a finite alloc function, Kleene’s fixed point theorem dictates
there is a m such that Fme (⊥) is a fixed point, so every trace in the
reified relation is also a trace in an unbounded number of unfoldings
of 7−→CESKt . This is the corresponding local completeness argument
for the algorithm.

56 pushdown analysis via relevant allocation

unfold(ς0, 7−→, 0) = {(ς0, ς) : ς0 7−→ ς}

unfold(ς0, 7−→,n+ 1) = unfold1(unfold(ς0, 7−→,n))

where unfold1(R) = R∪ {(ς , ς ′) : (_, ς) ∈ R, ς 7−→ ς ′}

The reification simply realizes all possible complete continuations
that a state could have, given Ξ:

〈〈e, ρ,σ, ι, κ̂〉, 〈e ′, ρ ′,σ ′, ι ′, κ̂ ′〉〉 ∈ R κ ∈ unroll ′Ξ(κ̂)

〈e, ρ,σ, ι++κ〉 7−→reify(S,R,F,Ξ) 〈e ′, ρ ′,σ ′, ι ′++κ〉

The unroll ′ judgment is like unroll, but with prepending of local con-
tinuations:

ε ∈ unroll ′Ξ(ε)

(ι, κ̂) ∈ Ξ(τ) κ ∈ unroll ′Ξ(κ̂)

ι++κ ∈ unroll ′Ξ(τ)

Theorem 15 (Correctness). For all e0, let ς0 = 〈e0,⊥,⊥, ε〉 in ∀n ∈
N, ς , ς ′ ∈ CESKt:

• if (ς , ς ′) ∈ unfold(ς0, 7−→CESKt ,n) then there is an m such that
ς 7−→reify(Fme0(⊥))

ς ′

• if ς 7−→reify(Fne0(⊥))
ς ′ then there is an m such that (ς , ς ′) is in

unfold(ς0, 7−→CESKt ,m)

Proof. By induction on n.

4.2.3 Remarks about cost

The common tradeoff for performance over precision is to use a global
store. A representation win originally exploited by Shivers [87] is to
represent the seen states’ stores by the age of the store. A context
in this case contains the store age for faster comparison. Old stores
are mostly useless since the current one subsumes them, so a useful
representation for the seen set is as a map from the rest of the state
to the store age it was last visited with. We will align with the anal-
ysis literature and call these “rest of state” objects points. Note that
since the store age becomes part of the state representation due to
“context,” there are considerably more points than in the comparable
finite state approach. When we revisit a state because the store age
(or Ξ age) is different from the last time we visited it (hence we’re
visiting a new state), we can clobber the old ages. A finite state ap-
proach will use less memory because the seen set will have a smaller
domain (fewer distinctions made because of the lack of a “context”
component).

4.3 stack inspection and recursive metafunctions 57

4.3 stack inspection and recursive metafunctions

Since we just showed how to produce a pushdown system from an
abstract machine, some readers may be concerned that we have lost
the ability to reason about the stack as a whole. This is not the case.
The semantics may still refer to Ξ to make judgments about the pos-
sible stacks that can be realized at each state. A metafunction in the
semantics that operates over a whole stack can be recast as a transi-
tion system that we overapproximate and run to fixed point using the
AAM methodology.

Some semantic features allow a language to inspect some arbitrar-
ily deep part of the stack, or compute a property of the whole stack
before continuing. Java’s access control security features are an ex-
ample of the first form of inspection, and garbage collection is an
example of the second. I will demonstrate both forms are simple
first-order metafunctions that the AAM methodology will soundly
interpret. Access control can be modeled with continuation marks,
so I demonstrate with the CM machine of Clements and Felleisen.

Semantics that inspect the stack do so with metafunction calls that
recur down the stack. Recursive metafunctions have a semantics as
well, hence fair game for AAM. And, they should always terminate
(otherwise the semantics is hosed). We can think of a simple pattern-
matching recursive function as a set of rewrite rules that apply repeat-
edly until it reaches a result. Interpreted via AAM, non-deterministic
metafunction evaluation leads to a set of possible results.

The finite restriction on the state space carries over to metafunction
inputs, so we can always detect infinite loops that abstraction may
have introduced and bail out of that execution path. Specifically, a
metafunction call can be seen as an initial state, s, that will evaluate
through the metafunction’s rewrite rules 7−→ to compute all terminal
states (outputs):

terminal : ∀A.relation A×A→ ℘(A)

terminal(7−→, s) = terminal∗(∅, {s}, ∅)

where terminal∗(S, ∅, T) = T
terminal∗(S, F, T) = terminal∗(S∪ F, F ′, T ∪ T ′)

where T ′ =
⋃
s∈F

post(s) ?
= ∅ → {s}, ∅

F ′ =
⋃
s∈F

post(s) \ S

post(s) = {s ′ : s 7−→ s ′}

This definition is a typical worklist algorithm. It builds the set of
terminal terms, T , by exploring the frontier (or worklist), F, and only
adding terms to the frontier that have not been seen, as represented

58 pushdown analysis via relevant allocation

by S. If s has no more steps, post(s) will be empty, meaning s should
be added to the terminal set T .

We prove a correctness condition that allows us to reason equation-
ally with terminal later on:

Lemma 16 (terminal∗ correct). Fix 7−→. Constrain arbitrary S, F, T such
that T v S and ∀s ∈ S, post(s) = ∅ ⇐⇒ s ∈ T , F ∩ S = ∅, and for all
s ∈ S, post(s) ⊆ S∪ F.

• Soundness: for all s ∈ S ∪ F, if s 7−→∗ st and post(st) = ∅ then
st ∈ terminal∗(S, F, T).

• Local completeness: for all s ∈ terminal∗(S, F, T) there is an s0 ∈
S∪ F such that s0 7−→∗ s and post(s) = ∅.

Proof. By induction on terminal∗’s recursion scheme.

Note that it is possible for metafunctions’ rewrite rules to them-
selves use metafunctions, but the seen set (S) for terminal must be
bound with a dynamic variable – it cannot restart at ∅ upon reentry.
Without this precaution, the host language will exceed its stack limits
when an infinite path is explored, rather than bail out.

4.3.1 Case study for stack traversal: GC

Garbage collection is an example of a language feature that needs to
crawl the stack, specifically to find live addresses. We are interested
in garbage collection because it can give massive precision boosts to
analyses [66, 29]. Unadulterated, abstract GC inflicts an exponential
state space that can destroy performance. The following function will
produce the set of live addresses in the stack:

KLL : Frame∗ → ℘(Addr)

KLL(κ) = KLL∗(κ, ∅)

KLL∗(ε,L) = L

KLL∗(φ:κ,L) = KLL∗(κ,L∪ T(φ))
where T(appL(e, ρ)) = T(appR(e, ρ)) = T(e, ρ)

T(e, ρ) = {ρ(x) : x ∈ fv(e)}

When interpreted via AAM, the continuation is indirected through
Ξ and leads to multiple results, and possibly loops through Ξ. Thus
this is more properly understood as

KLL(Ξ, κ̂) = terminal(7−→,KLL∗(Ξ, κ̂, ∅))

KLL∗(Ξ, ε,L) 7−→ L

KLL∗(Ξ,φ:τ,L) 7−→ KLL∗(Ξ, κ̂,L∪ T(φ)) if κ̂ ∈ Ξ(τ)

4.3 stack inspection and recursive metafunctions 59

A garbage collecting semantics can choose to collect the store with
respect to each live set (call this Γ∗), or, soundly, collect with respect
to their union (call this Γ̂).3 On the one hand we could have tighter
collections but more possible states, and on the other hand we can
leave some precision behind in the hope that the state space will be
smaller. In the general idea of relevance versus irrelevance, the con-
tinuation’s live addresses are relevant to execution, but are already
implicitly represented in contexts because they must be mapped in
the store’s domain.

A state is “collected” only if live addresses remain in the domain
of σ. We say a value v ∈ σ(a) is live if a is live. If a value is live, any
addresses it touches are live; this is captured by the computation in
R:

R(root,σ) = {b : a ∈ root,a ;∗σ b}

v ∈ σ(a) b ∈ T(v)

a ;σ b

So the two collection methods are as follows. Exact GC produces
different collected states based on the possible stacks’ live addresses:4

Γ∗(ς̂ ,Ξ) = {ς̂{σ := ς̂ .σ|L} : L ∈ live∗(ς̂ ,Ξ)}

live∗(〈e, ρ,σ, κ̂〉,Ξ) = {R(T(e, ρ)∪ L,σ) : L ∈ KLL(Ξ, κ̂)}

ς̂ ,Ξ 7−→ ς̂ ′,Ξ ′ ς̂ ′ ∈ Γ∗(ς ′,Ξ ′)
ς̂ ,Ξ 7−→Γ∗ ς̂ ′,Ξ

And inexact GC produces a single state that collects based on all
(known) stacks’ live addresses:

Γ̂(ς̂ ,Ξ) = ς̂{σ := ς̂ .σ|l̂ive(ς̂ ,Ξ)}

l̂ive(〈e, ρ,σ, κ̂〉,Ξ) = R(T(e, ρ)∪
⋃
KLL(Ξ, κ̂),σ)

ς̂ ,Ξ 7−→ ς̂ ′,Ξ ′

ς̂ ,Ξ 7−→Γ̂ Γ̂(ς
′,Ξ ′),Ξ ′

Without the continuation store, the baseline GC is

Γ(ς) = ς{σ := ς .σ|live(ς)}

live(e, ρ,σ, κ) = R(T(e, ρ)∪KLL(κ),σ)

ς 7−→ ς ′

ς 7−→Γ Γ(ς ′)

3 The garbage collecting version of PDCFA [38] evaluates the Γ̂ strategy.
4 It is possible and more efficient to build the stack’s live addresses piecemeal as an

additional component of each state, precluding the need for KLL. Each stack in Ξ
would also store the live addresses to restore on pop.

60 pushdown analysis via relevant allocation

Suppose at arbitrary times we decide to perform garbage collection
rather than continue with garbage. So when ς̂ 7−→ ς̂ ′, we instead do
ς̂ 7−→Γ ς̂ ′. The times we perform GC do not matter for soundness,
since we are not analyzing GC behavior. However, garbage stands in
the way of completeness. Mismatches in the GC application for the
different semantics lead to mismatches in resulting state spaces, not
just up to garbage in stores, but in spurious paths from dereferencing
a reallocated address that was not first collected.

The state space compaction that continuation stores give us makes
ensuring GC times match up for the completeness proposition te-
dious. Our statement of local completeness then will assume both
semantics perform garbage collection on every step. Call this step
relation 7−→ΓCESKt .

The generalization of “context irrelevance” to stack-relevant com-
putation is “context congruence”, where we use an equivalence rela-
tion ≡K to constrain traces. Define a semantics to be congruent mod
≡K the following way:

ctx-congruent : ∀S.℘(S× S)× ℘(Kont×Kont)→ Prop

ctx-congruent(7−→,≡K) = ∀π ∈ S∗, κ.Πwf (π, 7−→)ht(π, κ) =⇒
∀κ ′.κ ≡K κ ′ =⇒
Πwf (rt(π, κ, κ ′), 7−→)

In this case, continuations are equivalent if they touch the same ad-
dresses:

T(κ) = T(κ ′)

κ ≡Γ κ ′

The following lemma is ctx-congruent(stepΓCESKt
,≡Γ) restated with

less symbols.

Lemma 17 (Context congruence). For all traces π ∈ ΓCESKt
∗ and con-

tinuations κ such that ht(π, κ), for any κ ′ such that κ ≡K κ ′, rt(π, κ, κ ′) is
a valid trace.

Proof. Simple induction on π and cases on 7−→ΓCESKt .

Lemma 18 (Correctness of KLL). For all Ξ, κ, κ̂,L,

• Soundness: if κ ∈ unrollΞ(κ̂) then KLL∗(κ,L) ∈ terminal(7−→
,KLL∗(Ξ, κ̂,L))

• Local completeness: for all L ′ ∈ KLL∗(Ξ, κ̂,L) there is a κ ∈
unrollΞ(κ̂) such that L ′ = KLL∗(κ,L).

Proof. Soundness follows by induction on the unrolling. Local com-
pleteness follows by induction on the trace from local completeness
in Lemma 16.

4.3 stack inspection and recursive metafunctions 61

Theorem 19 (Correctness of Γ∗CESK∗tΞ). For all expressions e0,

• Soundness: if ς 7−→ΓCESKt ς ′ and ς .κ ∈ unrollΞ(κ̂), then there
are Ξ ′, κ̂ ′,σ ′ such that ς{κ := κ̂},Ξ 7−→Γ∗CESK∗tΞ ς̂ ′,Ξ ′ where ς̂ ′ =

ς ′{κ := κ̂ ′,σ := σ ′} and ς ′.κ ∈ unrollΞ ′(κ̂ ′) and finally there is an
L ∈ live∗(ς̂ ′,Ξ ′) such that σ ′|L = ς ′.σ|live(ς ′)

• Local completeness: if ς̂ ≡ 〈e, ρ,σ, κ̂〉,Ξ 7−→Γ∗CESK∗tΞ ς̂ ′,Ξ ′ and
there is an Lκ ∈ KLL(Ξ, κ̂) such that σ|L = σ (where L = R(T(e, ρ)∪
Lκ,σ)) and inv(ς̂ ,Ξ), for all κ ∈ unrollΞ(κ̂) such that KLL(κ) = Lκ,
there is a κ ′ such that ς̂{κ̂ := κ} 7−→ΓCESKt ς̂ ′{κ̂ := κ ′} (a GC step)
and κ ′ ∈ unrollΞ(ς̂ ′.κ̂)

Theorem 20 (Soundness of Γ̂CESK∗tΞ). For all expressions e0, if ς 7−→ΓCESKt

ς ′, inv(ς{κ := κ̂},Ξ), and ς .κ ∈ unrollΞ(κ̂), then there are Ξ ′, κ̂ ′,σ ′′ such
that ς{κ := κ̂},Ξ 7−→Γ̂CESK∗tΞ

ς̂ ′,Ξ ′ where ς̂ ′ = ς ′{κ := κ̂ ′,σ := σ ′′} and
ς ′.κ ∈ unrollΞ ′(κ̂ ′) and finally ς ′.σ|live(ς ′) v σ ′′|l̂ive(ς̂ ′,Ξ ′)

The proofs are straightforward, and use the usual lemmas for GC,
such as idempotence of Γ and T ⊆ R.

4.3.2 Case study analyzing security features: the CM machine

The CM machine provides a model of access control: a dynamic
branch of execution is given permission to use some resource if a
continuation mark for that permission is set to “grant.” There are
three new forms we add to the lambda calculus to model this feature:
grant, frame, and test. The grant construct adds a permission to
the stack. The concern of unforgeable permissions is orthogonal, so
we simplify with a set of permissions that is textually present in the
program:

P ∈ Permissions a set

Expr ::= . . . | grant P e | frame P e | test P e e

The frame construct ensures that only a given set of permissions are
allowed, but not necessarily granted. The security is in the semantics
of test: we can test if all marks in some set P have been granted in
the stack without first being denied; this involves crawling the stack:

OK(∅, κ) = True

OK(P, εm) = pass?(P,m)

OK(P,φ:mκ) = pass?(P,m) and OK(P \m−1(Grant), κ)

where pass?(P,m) = P ∩m−1(Deny) ?
= ∅

The set subtraction is to say that granted permissions do not need to
be checked farther down the stack.

62 pushdown analysis via relevant allocation

〈grant P e, ρ,σ, κ〉 〈e, ρ,σ, κ[P 7→ Grant]〉
〈frame P e, ρ,σ, κ〉 〈e, ρ,σ, κ[P 7→ Deny]〉

〈test P e0 e1, ρ,σ, κ〉 〈e0, ρ,σ, κ〉 if True = OK(P, κ)

〈e1, ρ,σ, κ〉 if False = OK(P, κ)
Figure 17: CM machine semantics

Continuation marks respect tail calls and have an interface that
abstracts over the stack implementation. Each stack frame added to
the continuation carries the permission map. The empty continuation
also carries a permission map. Crucially, the added constructs do not
add frames to the stack; instead, they update the permission map in
the top frame, or if empty, the empty continuation’s permission map.

m ∈ PermissionMap = Permissions ⇀
fin

GD

gd ∈ GD ::= Grant | Deny

κ ∈ Kont ::= εm | φ:mκ

Update for continuation marks:

m[P 7→ gd] = λx.x
?
∈ P → gd,m(x)

m[P 7→ gd] = λx.x
?
∈ P → m(x), gd

The abstract version of the semantics has one change on top of the
usual continuation store. The test rules are now

〈test P e0 e1, ρ,σ, κ̂〉,Ξ 7−→ 〈e0, ρ,σ, κ̂〉,Ξ if True ∈ ÔK(Ξ,P, κ̂)

7−→ 〈e1, ρ,σ, κ̂〉,Ξ if False ∈ ÔK(Ξ,P, κ̂)

where the a new ÔK function uses terminal and rewrite rules:

ÔK(Ξ,P, κ̂) = terminal(7−→, ÔK
∗
(Ξ,P, κ̂))

ÔK
∗
(Ξ, ∅, κ̂) 7−→ True

ÔK
∗
(Ξ,P, εm) 7−→ pass?(P,m)

ÔK
∗
(Ξ,P,φ:mτ) 7−→

{
ÔK(Ξ,P \m−1(Grant), κ̂) if pass?(P,m)

False otherwise

where κ̂ ∈ Ξ(τ)

Lemma 21 (Correctness of ÔK). For all Ξ,P, κ, κ̂,

• Soundness: if κ ∈ unrollΞ(κ̂) then OK(P, κ) ∈ ÔK(Ξ,P, κ̂).

• Local completeness: if b ∈ ÔK(Ξ,P, κ̂) then there is a κ ∈ unrollΞ(κ̂)
such that b = OK(P, κ).

4.4 relaxing contexts for delimited continuations 63

Proof. Soundness follows by induction on the unrolling. Local com-
pleteness follows by induction on the trace from local completeness
in Lemma 16.

With this lemma in hand, the correctness proof is almost identical
to the core proof of correctness.

Theorem 22 (Correctness). The abstract semantics is sound and locally
complete in the same sense as Theorem 14.

4.4 relaxing contexts for delimited continuations

In Section 4.2 we showed how to get a pushdown abstraction by sep-
arating continuations from the value store. This separation breaks
down when continuations themselves become values via first-class
control operators. The glaring issue is that continuations become
“storable” and relevant to the execution of functions. But, it was pre-
cisely the irrelevance that allowed the separation of σ and Ξ. Specifi-
cally, the store components of continuations become elements of the
store’s codomain — a recursion that can lead to an unbounded state
space and therefore a non-terminating analysis. We apply the AAM
methodology to cut out the recursion; whenever a continuation is
captured to go into the store, we allocate an address to approximate
the store component of the continuation.

We introduce a new environment, χ, that maps these addresses to
the stores they represent. The stores that contain addresses in χ are
then open, and must be paired with χ to be closed. This poses the same
problem as before with contexts in storable continuations. Therefore,
we give up some precision to regain termination by flattening these
environments when we capture continuations. Fresh allocation still
maintains the concrete semantics, but we necessarily lose some ability
to distinguish contexts in the abstract.

4.4.1 Case study of first-class control: shift and reset

I choose to study shift and reset [23] because delimited contin-
uations have proven useful for implementing web servers [75, 61],
providing processes isolation in operating systems [50], representing
computational effects [33], modularly implementing error-correcting
parsers [86], and finally undelimited continuations are passé for good
reason [49]. Even with all their uses, however, their semantics can
yield control-flow possibilities that surprise their users. A precise
static analysis that illuminates their behavior is then a valuable tool.

Our concrete test subject is the abstract machine for shift and reset
adapted from Biernacki et al. [8] in the “eval, continue” style in Fig-
ure 18. The figure elides the rules for standard function calls. The
new additions to the state space are a new kind of value, comp(κ),

64 pushdown analysis via relevant allocation

ς 7−→SR ς ′

ev (reset e, ρ,σ, κ,C) ev (e, ρ,σ, ε, κ ◦C)
co (ε, κ ◦C, v,σ) co (κ,C, v,σ)

ev (shift x.e, ρ,σ, κ,C) ev (e, ρ[x 7→ a],σ ′, ε,C)

where σ ′ = σt [a 7→ comp(κ)]

co (fun(comp(κ ′)):κ,C, v,σ) co (κ ′, κ ◦C, v,σ)
Figure 18: Machine semantics for shift/reset

and a meta-continuation, C ∈ MKont = Kont∗ for separating continua-
tions by their different prompts. Composable continuations are indis-
tinguishable from functions, so even though the meta-continuation is
concretely a list of continuations, its conses are notated as function
composition: κ ◦C.

4.4.2 Reformulated with continuation stores

The machine in Figure 18 is transformed now to have three new ta-
bles: one for continuations (Ξκ), one to close stored continuations
(χ), and one for meta-continuations (ΞC). The first is like previous
sections, albeit continuations may now have the approximate form
that is storable. The meta-continuation table is more like previous
sections because meta-contexts are not storable. Meta-continuations
do not have simple syntactic strategies for bounding their size, so I
choose to bound them to size 0. They could be paired with lists of
K̂ont bounded at an arbitrary n ∈N, but I simplify for presentation.

Contexts for continuations are still at function application, but now
contain the χ. Contexts for meta-continuations are in two places:
manual prompt introduction via reset, or via continuation invoca-
tion. At continuation capture time, continuation contexts are approx-
imated to remove σ̂ and χ components. The different context spaces
are thus:

τ̇ ∈ ExactContext ::= 〈e, ρ, σ̂,χ〉

τ̂ ∈ Ĉontext ::= 〈e, ρ,a〉
τ ∈ Context ::= τ̂ | τ̇

γ ∈MContext ::= 〈e, ρ, σ̂,χ〉 | 〈κ̃, v̂, σ̂,χ〉

Revisiting the graphical intuitions of the state space, we have now
κ̃ in states’ stores, which represent an overapproximation of a set of con-
tinuations. We augment the illustration from Figure 15 in Figure 19

to include the new CStore and the overapproximating behavior of κ̃.
The informal notation σ ; κ̃ suggests that the state’s store contains,
or refers to some κ̃.

4.4 relaxing contexts for delimited continuations 65

τ
mt

τ'

τ''

ι
ι'

ι''τ'''

...

ς'ς ⟼

mt

υ'
υ'

(ι',κ')
(ι,κ)

σ↝κ̃

CStore

States

KStore

Figure 19: Graphical visualization of states, Ξκ̂ and ΞĈ.

ς̂ ∈ ŜR ::= ev (e, ρ, σ̂,χ, κ̂, Ĉ) | co (κ̂, Ĉ, v̂, σ̂,χ)

State ::= ς̂ ,Ξκ̂,ΞĈ
χ ∈ KClosure = Addr ⇀

fin
℘(Store)

Ξκ̂ ∈ KStore = ExactContext ⇀
fin
℘(K̂ont)

ΞĈ ∈ CStore = MContext ⇀
fin
℘(K̂ont× M̂Kont)

κ̂ ∈ K̂ont ::= ε | φ:τ | τ κ̃ ∈ K̃ont ::= ε | τ̂

Ĉ ∈ M̂Kont ::= ε | γ v̂ ∈ V̂alue ::= κ̃ | (`, ρ)
Figure 20: Shift/reset abstract semantic spaces

66 pushdown analysis via relevant allocation

The approximation and flattening happens in A:

A : KClosure×Addr× K̂ont→ KClosure× K̃ont

A(χ,a, ε) = χ, ε

A(χ,a,φ:τ) = χ ′,φ:τ̂ where (χ ′, τ̂) = A(χ,a, τ)

A(χ,a, 〈e, ρ, σ̂,χ ′〉) = χt χ ′ t [a 7→ σ̂],φ:〈e, ρ,a〉
A(χ,a, 〈e, ρ,b〉) = χt [a 7→ χ(b)],φ:〈e, ρ,a〉

The third case is where continuation closures get flattened together.
The fourth case is when an already approximate continuation is ap-
proximated: the approximation is inherited. Approximating the con-
text and allocating the continuation in the store require two addresses,
so we relax the specification of alloc to allow multiple address alloca-
tions in this case.

Each of the four rules of the original shift/reset machine has a
corresponding rule that we explain piecemeal. I will use → for steps
that do not modify the continuation stores for notational brevity. We
use the above A function in the rule for continuation capture, as
modified here.

ev (shift x.e, ρ, σ̂,χ, κ̂, Ĉ) → ev (e, ρ ′, σ̂ ′,χ ′, ε, Ĉ)

where

(a,a ′) = alloc(ς̂ ,Ξκ̂,ΞĈ) ρ ′ = ρ[x 7→ a]

(χ ′, κ̃) = A(χ,a ′, κ̂) σ̂ ′ = σ̂t [a 7→ κ̃]

The rule for reset stores the continuation and meta-continuation
in ΞĈ:

ev (reset e, ρ, σ̂,χ, κ̂, Ĉ),Ξκ̂,ΞĈ 7−→ ev (e, ρ, σ̂,χ, ε,γ),Ξκ̂,Ξ ′
Ĉ

where γ = 〈e, ρ, σ̂,χ〉
ΞĈ = ΞĈ t [γ 7→ (κ̂, Ĉ)]

The prompt-popping rule simply dereferences ΞĈ:

co (ε,γ, v̂, σ̂,χ) → co (κ̂, Ĉ, v̂, σ̂,χ) if (κ̂, Ĉ) ∈ ΞĈ(γ)

The continuation installation rule extends ΞĈ at the different con-
text:

co (κ̂, Ĉ, v̂, σ̂,χ),Ξκ̂,ΞĈ 7−→ co (κ̃,γ, v̂, σ̂,χ),Ξκ̂,Ξ ′
Ĉ

if (appR(κ̃), κ̂ ′) ∈ pop(Ξκ̂,χ, κ̂)

where γ = 〈κ̃, v̂, σ̂,χ〉
ΞĈ = ΞĈ t [γ 7→ (κ̂ ′, Ĉ)]

4.4 relaxing contexts for delimited continuations 67

Again we have a metafunction pop, but this time to interpret approxi-
mated continuations:

pop(Ξκ̂,χ, κ̂) = pop∗(κ̂, ∅)
where pop∗(ε,G) = ∅

pop∗(φ:τ,G) = {(φ, τ)}

pop∗(τ,G) =
⋃
κ̂∈G ′

(pop∗(κ̂,G∪G ′))

where G ′ =
⋃

τ̇∈I(τ,χ)

Ξκ̂(τ̇) \G

I(τ̇,χ) = {τ̇}

I(〈e, ρ,a〉,χ) = {〈e, ρ, σ̂,χ ′〉 ∈ dom(Ξκ̂) : σ̂ ∈ χ(a),χ ′ v χ}

Notice that since we flatten χs together, we need to compare for con-
tainment rather than for equality (in I). A variant of this semantics
with GC is available in the PLT redex models.

comparison to cps transform to remove shift and re-
set : We lose precision if we use a CPS transform to compile away
shift and reset forms, because variables are treated less precisely
than continuations. Consider the following program and its CPS
transform for comparison:

(let* ([id (λ (x) x)]
[f (λ (y) (shift k (k (k y))))]
[g (λ (z) (reset (id (f z))))])

(6 (g 0) (g 1)))

(let* ([id (λ (x k) (k x))]
[f (λ (y j) (j (j y)))]
[g (λ (z h)

(h (f z (λ (fv)
(id fv (λ (i) i))))))])

(g 0 (λ (g0v) (g 1 (λ (g1v) (6 g0v g1v))))))

The CESK∗tΞ machine with a monovariant allocation strategy will pre-
dict the CPS’d version returns true or false. In analysis literature,
“monovariant” means variables get one address, namely themselves.
Our specialized analysis for delimited control will predict the non-
CPS’d version returns true.

68 pushdown analysis via relevant allocation

appL(e, ρ) vΞ,χ appL(e, ρ)

v vΞ,χ v̂

appR(v) vΞ,χ appR(v̂)

ε v unrollΞ,χ(ε)

φ vΞ,χ φ̂ κ v unrollΞ,χ(τ)

φ:κ v unrollΞ,χ(φ̂:τ)

κ̂ ∈ Ξ(τ̇) κ v unrollΞ,χ(κ̂)

κ v unrollΞ,χ(τ̇)

τ̇ ∈ I(Ξ,χ, τ̂) κ v unrollΞ,χ(τ̇)

κ v unrollΞ,χ(τ̂)

ε v unrollCΞκ̂,ΞĈ,χ(ε)

(κ̂, Ĉ) ∈ ΞĈ(γ) κ v unrollΞκ̂,χ(κ̂) C v unrollCΞκ̂,ΞĈ,χ(Ĉ)

κ ◦C v unrollCΞκ̂,ΞĈ,χ(γ)

Figure 21: Order on (meta-)continuations

4.4.3 Correctness

We impose an order on values since stored continuations are more
approximate in the analysis than in SR:

v vΞ,χ v

κ v unrollΞ,χ(κ̃)

comp(κ) vΞ,χ κ̃

∀v ∈ σ(a).∃v̂ ∈ σ̂(a).v vΞ,χ v̂

σ vΞ,χ σ̂

κ v unrollΞκ̂,χ(κ̂) C v unrollCΞκ̂,ΞĈ,χ(Ĉ) σ vΞκ̂,χ σ̂

ev (e, ρ,σ, κ,C) v ev (e, ρ, σ̂,χ, κ̂, Ĉ),Ξκ̂,ΞĈ

v vΞκ̂,χ v̂

κ v unrollΞκ̂,χ(κ̂) C v unrollCΞκ̂,ΞĈ,χ(Ĉ) σ vΞκ̂,χ σ̂

co (κ,C, v,σ) v co (κ̂, Ĉ, v̂, σ̂,χ),Ξκ̂,ΞĈ

Unrolling differs from the previous sections because the values in
frames can be approximate. Thus, instead of expecting the exact con-
tinuation to be in the unrolling, we have a judgment that an unrolling
approximates a given continuation in Figure 21 (note we reuse I from
pop∗’s definition).

Theorem 23 (Soundness). If ♦ 7−→SR �, and ♦ v � then there is � such
that � 7−→SRSχt � and � v �.

freshness implies completeness The high level proof idea is
that fresh allocation separates evaluation into a sequence of bounded
length paths that have the same store, but the store only grows and
distinguishes contexts such that each continuation and metacontinu-
ation have a unique unrolling. It is an open question whether the
addition of garbage collection preserves completeness. Each context

4.4 relaxing contexts for delimited continuations 69

with the same store will have different expressions in them since ex-
pressions can only get smaller until a function call, at which point
the store grows. This forms an order on contexts: smaller store
means smaller context, and same store but smaller expression (in-
deed a subexpression) means a smaller context. Every entry in each
enviroment (σ̂,χ,Ξκ̂,ΞĈ) will map to a unique element, and the con-
tinuation stores will have no circular references (the context in the
tail of a continuation is strictly smaller than the context that maps to
the continuation). There can only be one context that I maps to for
approximate contexts because of the property of stores in contexts.

We distill these intuitions into an invariant about states that we will
then use to prove completeness.

∀a ∈ dom(σ̂).∃v̂.σ̂(a) = {v̂} ∧ v̂ �χ Ξκ̂
∀a ∈ dom(χ).∃σ̂ ′.χ(a) = {σ̂ ′} ∧ σ̂ ′ ∈ π3(dom(Ξκ̂))

∀τ̇ ∈ dom(Ξκ̂).∃κ̂.Ξκ̂(τ̇) = {κ̂} ∧ κ̂ <Ξκ̂χ τ̇

∀γ ∈ dom(ΞĈ).∃Ĉ.ΞĈ(γ) = {Ĉ} ∧ Ĉ < γ

inv∗(σ̂,χ,Ξκ̂,ΞĈ)

inv∗(σ̂,χ,Ξκ̂,ΞĈ) 〈e, ρ, σ̂,χ〉 < dom(Ξκ̂)∪ dom(ΞĈ)

(∃〈ec, ρ, σ̂,χ〉 ∈ dom(Ξκ̂)) =⇒ e ∈ subexpressions(ec)
κ̂ �χ Ξκ̂ Ĉ � ΞĈ

invfresh(ev (e, ρ, σ̂,χ, κ̂, Ĉ),Ξκ̂,ΞĈ)

inv∗(σ̂,χ,Ξκ̂,ΞĈ) v̂ �χ Ξκ̂ κ̂ �χ Ξκ̂ Ĉ � ΞĈ
invfresh(co (κ̂, Ĉ, v̂, σ̂,χ),Ξκ̂,ΞĈ)

Where the order � states that any contexts in the (meta-)continuation
are mapped in the given table.

(`, ρ) �χ Ξκ̂ ε �χ Ξκ̂ ε � ΞĈ

τ̇ ∈ dom(Ξκ̂)

τ̇ �χ Ξκ̂

γ ∈ dom(ΞĈ)

γ � ΞĈ

∃σ̂.χ(a) = {σ̂} ∃!χ ′.〈e, ρ, σ̂,χ ′〉 ∈ dom(Ξκ̂)∧ χ
′ v χ

〈e, ρ,a〉 �χ Ξκ̂

70 pushdown analysis via relevant allocation

And the order < states that the contexts in the (meta-)continuation
are strictly smaller than the given context.

ε <Ξκ̂χ ε < γ

τ <Ξκ̂χ τ̇

φ:τ <Ξκ̂χ τ̇

e ′ ∈ subexpressions(e)

〈e ′, ρ, σ̂,χ〉 <Ξκ̂χ 〈e, ρ, σ̂,χ〉
e ′ ∈ subexpressions(e)

〈e ′, ρ, σ̂,χ〉 < 〈e, ρ, σ̂,χ〉

dom(σ̂) < dom(σ̂ ′)

〈_, _, σ̂, _〉 <Ξκ̂χ 〈_, _, σ̂ ′, _〉
dom(σ̂) < dom(σ̂ ′)

〈_, _, σ̂, _〉 < 〈_, _, σ̂ ′, _〉

∀τ̇ ′ ∈ I(Ξκ̂,χ, τ̂) τ̇ ′ <Ξκχ τ̇

τ̂ <Ξκ̂χ τ̇

Lemma 24 (Freshness invariant). If alloc produces fresh addresses,
invfresh(ς̂ ,Ξκ̂,ΞĈ) and ς̂ ,Ξκ̂,ΞĈ 7−→ ς̂ ′,Ξ ′κ̂,Ξ ′

Ĉ
then invfresh(ς̂

′,Ξ ′κ̂,Ξ ′
Ĉ
).

Proof. By case analysis on the step.

Theorem 25 (Complete for fresh allocation). If alloc produces fresh ad-
dresses then the resulting semantics is complete with respect to states satis-
fying the invariant.

Proof sketch. By case analysis and use of the invariant to exploit the
fact the unrollings are unique and the singleton codomains pigeon-
hole the possible steps to only concrete ones.

4.5 short-circuiting via “summarization”

All the semantics of previous sections have a performance weakness
that many analyses share: unnecessary propagation. Consider two
portions of a program that do not affect one another’s behavior. Both
can change the store, and the semantics will be unaware that the
changes will not interfere with the other’s execution. The more possi-
ble stores there are in execution, the more possible contexts in which
a function will be evaluated. Multiple independent portions of a pro-
gram may be reused with the same arguments and store contents
they depend on, but changes to irrelevant parts of the store lead to
redundant computation. The idea of skipping from a change past
several otherwise unchanged states to uses of the change is called
“sparseness” in the literature [76, 104, 73].

Memoization is a specialized instance of sparseness; the base stack
may change, but the evaluation of the function does not, so given an
already computed result we can jump straight to the answer. I use
the vocabulary of “relevance” and “irrelevance” so that future work
can adopt the ideas of sparseness to reuse contexts in more ways.

4.5 short-circuiting via “summarization” 71

Recall the core notion of irrelevance: if we have seen the results
of a computation before from a different context, we can reuse them.
The semantic counterpart to this idea is a memo table that we extend
when popping and appeal to when about to push. This simple idea
works well with a deterministic semantics, but the nondeterminism
of abstraction requires care. In particular, memo table entries can end
up mapping to multiple results, but not all results will be found at
the same time. Note the memo table space:

M ∈Memo = Context ⇀
fin
℘(Relevant)

Relevant ::= 〈e, ρ,σ〉

There are a few ways to deal with multiple results:

1. rerun the analysis with the last memo table until the table doesn’t
change (expensive),

2. short-circuit to the answer but also continue evaluating anyway
(negates most benefit of short-circuiting), or

3. use a frontier-based semantics like in Section 4.2.2 with global
Ξ and M, taking care to

a) at memo-use time, still extend Ξ so later memo table exten-
sions will “flow” to previous memo table uses, and

b) when Ξ and M are extended at the same context at the
same time, also create states that act like the M extension
point also returned to the new continuations stored in Ξ.

I will only discuss the final approach. The same result can be
achieved with a one-state-at-a-time frontier semantics, but I believe
this is cleaner and more parallelizable. Its second sub-point I will call
the “push/pop rendezvous.” The rendezvous is necessary because
there may be no later push or pop steps that would regularly appeal
to either (then extended) table at the same context. The frontier-based
semantics then makes sure these pushes and pops find each other to
continue on evaluating. In pushdown and nested word automata
literature, the push to pop short-circuiting step is called a “summary
edge” or with respect to the entire technique, “summarization.” I find
the memoization analogy appeals to programmers’ and semanticists’
operational intuitions.

A second concern for using memo tables is soundness. Without the
completeness property of the semantics, memoized results in, e.g., an
inexactly GC’d machine, can have dangling addresses since the possi-
ble stacks may have grown to include addresses that were previously
garbage. These addresses would not be garbage at first, since they
must be mapped in the store for the contexts to coincide, but during
the function evaluation the addresses can become garbage. If they

72 pushdown analysis via relevant allocation

are supposed to then be live, and are used (presumably they are real-
located post-collection), the analysis will miss paths it must explore
for soundness. Thus we generalized context irrelevance to context
congruence.

Context congruence is a property of the semantics without continu-
ation stores, so there is an additional invariant to that of Section 4.2
for the semantics with Ξ andM: M respects context congruence. Con-
texts must carry enough information to define an acceptability propo-
sition to apply context congruence. A context abstracts over a set of
continuations, so all continuations in this set must be congruent to
each other.

Let’s abstract a bit from our specific representations with some
named concepts. A context is extendable to a state in the following
way:

extend : Context×Kont→ CESKt

extend(〈ec, ρc,σc〉, κ) = 〈ec, ρc,σc, κ〉

A result is plugged into a context to create a state in the following
way:

plug : Relevant×Kont→ CESKt

plug(〈er, ρr,σr〉, κ) = 〈er, ρr,σr, κ〉

So if for 7−→M⊆ CESKt × CESKt the notion of acceptability is well-
behaved,

ctx-congruent(7−→M,≡K), and

∀τ, κ, κ ′.A(τ, κ)∧A(τ, κ ′) =⇒ κ ≡K κ ′

then we state the invariant on M as follows:

invM(⊥)

invM(M)

∀r ∈ R, κ.A(τ, κ) =⇒ ∃π ≡ extend(τ, κ) 7−→∗M plug(r, κ).ht(π, κ)

invM(M[τ 7→ R])

We can prove this invariant with appeals to the context congruence
lemma and the Ξ invariant to stitch together the trace.

Inexact GC does not respect context congruence for the same rea-
sons it is not complete: some states are spurious due to inequivalent
continuations’ effect on GC. This means that some memo table entries
will be spurious, and the expected path in the invariant will not exist.
The reason we use unrolled continuations instead of simply ε for this
(balanced) path is precisely for stack inspection reasons.

The rules in Figure 22 are the importantly changed rules from Sec-
tion 4.2 that short-circuit to memoized results. The technique looks

4.5 short-circuiting via “summarization” 73

ς̂ ,Ξ,M 7−→ ς̂ ′,Ξ ′,M ′

〈(e0 e1), ρ,σ, κ̂〉,Ξ,M 〈e0, ρ,σ, appL(e1, ρ):τ〉,Ξ,M

if τ /∈ dom(M), or

〈e ′, ρ ′,σ ′, κ̂〉,Ξ ′,M
if 〈e ′, ρ ′,σ ′〉 ∈M(τ)

where τ = 〈(e0 e1), ρ,σ〉
Ξ ′ = Ξt [τ 7→ κ̂]

〈v,σ, appR(λ x. e, ρ):τ〉,Ξ,M 〈e, ρ ′,σ ′, κ̂〉,Ξ,M ′ if κ̂ ∈ Ξ(τ)
where ρ ′ = ρ[x 7→ a]

σ ′ = σt [a 7→ v]

M ′ =Mt [τ 7→ 〈e, ρ ′,σ ′〉]

Figure 22: Important memoization rules

more like memoization with a CESIK∗tΞ machine, since the memoiza-
tion points are truly at function call and return boundaries. The pop
function would need to also update M if it dereferences through a
context, but otherwise the semantics are updated mutatis mutandis.

Fe(S,R, F,Ξ,M) = (S∪ F,R∪ R ′, F ′ \ S,Ξ ′,M ′)

where

I =
⋃
ς∈F

{(〈ς , ς ′〉,Ξ ′,M ′) : ς ,Ξ,M 7−→ ς ′,Ξ ′,M ′}

R ′ = π0I Ξ ′ =
⊔
π1I M ′ =

⊔
π2I

∆Ξ = Ξ ′ \ Ξ ∆M =M ′ \M

F ′ = π1R
′ ∪ {〈e, ρ,σ, κ̂〉 : τ ∈ dom(∆Ξ)∩ dom(∆M).

κ̂ ∈ ∆Ξ(τ), 〈e, ρ,σ〉 ∈ ∆M(τ)}

The πi notation is for projecting out pairs, lifted over sets. This
worklist algorithm describes unambiguously what is meant by “ren-
dezvous.” After stepping each state in the frontier, the differences to
the Ξ and M tables are collected and then combined in F ′ as calling
contexts’ continuations matched with their memoized results.

74 pushdown analysis via relevant allocation

Reifyε

〈〈e, ρ,σ, κ̂〉, 〈e ′, ρ ′,σ ′, κ̂〉〉 ∈ R κ ∈ unrollΞ(κ̂)

〈e, ρ,σ, κ〉 7−→reifyM(S,R,F,Ξ,M) 〈e ′, ρ ′,σ ′, κ〉

Reify±
〈〈e, ρ,σ,φ:τ〉, 〈e ′, ρ ′,σ ′,φ ′:τ〉〉 ∈ R κ̂ ∈ Ξ(τ) κ ∈ unrollΞ(κ̂)

〈e, ρ,σ,φ:κ〉 7−→reifyM(S,R,F,Ξ,M) 〈e ′, ρ ′,σ ′,φ ′:κ〉

Reify+
〈〈e, ρ,σ, κ̂〉, 〈e ′, ρ ′,σ ′,φ:〈e, ρ,σ〉〉〉 ∈ R κ ∈ unrollΞ(κ̂)

〈e, ρ,σ, κ〉 7−→reifyM(S,R,F,Ξ,M) 〈e ′, ρ ′,σ ′,φ:κ〉

Reify-
〈〈e, ρ,σ, appR(v):τ〉, 〈e ′, ρ ′,σ ′, κ̂ ′〉〉 ∈ R

κ̂ ∈ Ξ(τ) κ ∈ unrollΞ(κ̂)

〈e, ρ,σ, κ〉 7−→reifyM(S,R,F,Ξ,M) 〈e ′, ρ ′,σ ′, κ〉

Theorem 26 (Correctness). For all e0, let ς0 = 〈e0,⊥,⊥, ε〉 in ∀n ∈
N, ς , ς ′ ∈ CESKt:

• if (ς , ς ′) ∈ unfold(ς0, 7−→CESKt ,n) then there is an m such that
ς 7−→reifyM(Fme0

(⊥)) ς
′

• if ς 7−→reifyM(Fne0
(⊥)) ς ′ then there is an m such that (ς , ς ′) is in

unfold(ς0, 7−→CESKt ,m)

The proof appeals to the invariant on M whose proof involves an
additional argument for the short-circuiting step that reconstructs the
path from a memoized result using both context congruence and the
table invariants.

Part II

A L G O R I T H M I C C O N S T R U C T I O N S

I N T R O D U C T I O N T O PA RT I I :
A L G O R I T H M I C C O N S T R U C T I O N S

“Besides black art, there is only automation and mechanization.”
~Federico Garcia Lorca

The previous part of this dissertation set up a methodology for
approaching analysis design. This part formalizes and automates
the methodology with a language of abstractable semantics. Existing
tools for writing semantics focus on executing the provided semantics
in a more explicit model that offers no built-in support for abstrac-
tion [80, 32]. They are fine platforms on which to build AAM-style
constructions, type-checkers, and program verifiers as in Nguyen
et al. [69], Tobin-Hochstadt and Van Horn [92], Van Horn and Might
[95], Glaze and Van Horn [35], Kuan et al. [55], Rosu [79]. Indeed
the PLT Redex tool for semantics engineering inspired the language I
describe in this part of the dissertation.

The process of translating a concrete semantics in Redex to its
“AAM-ified” abstract semantics again in Redex is turn-the-crank, mind-
less, yet error prone grunt work. An “abstract semantics” in the AAM
sense is still executable, and can be seen as concrete on a different
level. Because the semantics is executable, Redex and the K frame-
work are still valid tools to use, if unwieldy at times. The further
transformations for more efficient interpretation add insult to injury,
contorting one’s prototype into the brittle mess they probably hoped
to avoid.

A goal for our semantics is to be expressive and flexible enough
to support standard abstract machines for concrete execution, and ab-
stract abstract machines for abstract execution (analysis). The bound-
ary between concrete and abstract is mitigated by user-provided allo-
cation functions, for implicit and explicit resource allocation.

The first chapter in this part details the syntax and concrete se-
mantics of a core Redex-like language. The second chapter adds
the machinery necessary to soundly abstract allocation while still
staying faithful to the concrete semantics if allocation happens to
be fresh. The language natively supports inserting abstraction at
all allocation points in order to guard against an unbounded state
space. Further, supporting both concrete and abstract execution in
one meta-semantics necessitates precise equality and object identity
judgements. The core language supports both equality and object
identity via a native cardinality analysis.

The final technical chapter is a case study that demonstrates the fea-
sibility of automatic analysis construction for complicated semantics.
The case study details a novel semantics for temporal higher-order

77

78

contracts, written in the language previously described. The analysis
my language produces is itself a novel research contribution.

5
A L A N G U A G E F O R A B S T R A C T M A C H I N E S

As simple as the AAM method is to apply in many cases, the fact that
a human is “the compiler” from a standard to non-standard machine
makes the process error-prone. Translating large machines means a
large opportunity for error, even though the translation is “simple.”
Worse, when a semantics needs a notion of object identity or struc-
tural equality, the naive AAM translation is unsound or uselessly im-
precise. A better solution is to have a language of semantics that can
interpret the meaning of an object language on programs both in the
concrete and in the abstract.

The abstract machines we have seen in the previous chapters have
all had a similar shape - a list of reduction rules like

Pattern 7−→ Template [optional side-condition]

A meta-language for expressing a language’s semantics with re-
duction rules of this shape must then have a semantics of pattern
matching, side-condition evaluation and template evaluation. This
chapter details a small language of reduction rules that can appeal to
first-order metafunctions. I give the concrete semantics only, to help
the reader understand the linguistic constructs before we dive into
abstractions, Galois connections, and dragons.

The concrete semantics relies on external parameters for address al-
location, data structure allocation, interpretation of “external values,”
etc. If any assumptions required for “concrete execution” are violated
by these parameters, the semantics is undefined. These parameters
are the knobs for altering the power for our eventual abstraction, so
I introduce them in this chapter to get the reader comfortable with
their placement.

5.1 representing an abstract machine

An abstract machine in our sense is a collection of reduction rules for
transforming machine states. A machine state (ς) is

ς ∈ State = Store× Term× Time

Each of these components has a role in the overall evaluation model.

79

80 a language for abstract machines

term :

t ∈ Term = Variant(n, t) | External(E, v) | EAddr(a) | IAddr(a)

where E is a description of an external value space, like Number,

and v is a meta-meta-language value that E uses

to represent elements of the space.

A term is what a pattern manipulates and what an expression con-
structs. An object language’s representation of a “state” and every-
thing in it is a term. For example, since the store is already provided,
the CESK machine’s term will be a CEK tuple: (ev e ρ κ).

A Term is one of four (4) kinds:

1. Variant: a named n-tuple of terms;

2. External: a meta-meta-language value paired with an external
space descriptor of the value space’s operations (in the concrete,
only equality);

3. Explicit address: an address (which can be anything) with an
identity;

4. Indirect address: an address that stands for the term it maps in
the store.

The language in which we express an abstract machine’s reduction
relation does not allow direct access to terms. Instead the language
offers a language of expressions. A variant must be constructed out
of subexpressions’ evaluations, an external value may be written, an
explicit address must be allocated, and an indirect address can only
be created with the variant construction external parameter.

store :

σ ∈ Store = Addr ⇀
fin

Term

The core ideas of AAM are those of address allocation and store-
allocating data. In order to perform “the AAM transform,” we need
linguistic support to allocate addresses, update and read from a store.

time :

τ ∈ Time a user-provided set with no restrictions.

tick : State→ Time a user-provided update function

The Time component is inherited from core AAM: it is user-provided
to help guide allocation.

For example, in the concrete semantics of kCFA, the Time compo-
nent is a list of all functions called, in the order that they were called.
The list of functions called provides a distinguishing feature for stor-
ing binders in the store. As a result, no two function calls create the
same 〈variable, τ〉 pair, so allocation is “fresh.”

5.2 discussion of the design space 81

5.2 discussion of the design space

The language we develop in this and the following chapter is dis-
tinct from other semantics modeling systems in important ways. The
first is that the language reuses its language of “rules” to allow in-
termediate computation via calls to metafunctions defined as a list of
rules. The second is that we explicitly support a single-threaded store
within the language. The third is that we have two flavors of address
into the store: explicit and implicit.

Store-passing is by no means pleasant or impervious to error, but
the main motivation to linguistically support a store is to help au-
tomatically abstract it à la AAM. With stores come addresses. Ex-
plicit addresses are for direct use by rules; they are what one usually
thinks of an address. Implicit addresses are a tool that we use to hide
that some nested data structures are actually threaded through the
store. For now, our established familiarity with AAM’s strategy to
“store-allocate recursion” should be enough foreshadowing to moti-
vate implicit addresses. We will see a longer discussion of the utility
of implicit addresses in Section 6.5.

Abstract machines have a “small-step” semantics, meaning we rep-
resent intermediate computation with explicit state transitions as gov-
erned by “rules.” But, unlike in term reduction systems [52], some in-
termediate computation can be hidden with function calls. Therefore
we allow rules to call functions in order to compute the machine’s
overall “next step,” even if the metafunction takes several steps of
computation. We call such functions “metafunctions” because of their
role in expressing a semantics. For example, the CM machine in Sec-
tion 4.3.2 has a rule that uses the metafunction OK to recursively
crawl the store for access control information.

Recursive metafunctions are written as ordered conditional reduc-
tion rules on terms that represent the call to the function, e.g. factorial
looks like14 14 An abbreviated

form for illustrative
purposes.factorial : Nat→ Nat

(factorial (Zero)) 7−→ (S (Zero))

(factorial n) 7−→ Call(mult, 〈n, Call(factorial, 〈m〉)〉)
where (S m) = n

and n ∈ Nat ::= (Zero) | (S n)

Call is the metalanguage’s built-in metafunction for interpreting user-
defined metafunctions. A Call uses the named function’s associated
reduction rules to rewrite the Call to the function’s result. Note the
big-step flavor of this - the reason is that these are metafunctions for a
semantics description and are therefore expected to be total. We can
understand functions as out-of-band rewriting rules for intermediate
computation. A reduction rule can thus refer to the output of a recur-
sive metafunction without the metafunction evaluation contributing

82 a language for abstract machines

to any of the machine’s trace history. Metafunctions’ reduction rules
are additionally, as a nicety, viewed as a top-level pattern match: rules
are applied in order, and stop when a rule applies.

call syntax The asymmetry between the function pattern and
function call serves to syntactically distinguish variants (e.g., Zero
and S) and functions. When we create a variant Variant(n, 〈t . . .〉), the
meta-semantics invokes an external parameter to create an alternative
representation of the variant that is equivalent to Variant(n, 〈t . . .〉).
When we introduce approximation, the external parameter may choose
to abstract its subterms to curtail any unbounded nesting.

When we call a function, the arguments are packaged into a variant
sharing the same name as the function and are then immediately de-
structured by the rewrite rules. I use this strategy to reuse the match-
ing machinery for function evaluation. Function calls themselves are
not data structures, so we don’t need to worry about allocating space
for them. The syntax distinguishes calls and variant construction to
draw attention to their different allocation behavior.

5.3 the grammar of patterns and rules

In the previous part of this dissertation, we’ve seen some examples
of abstract machine rules. For instance, an abstract machine rule can
be unconditional:

CESK variable lookup:

(ev x ρ σ κ) 7−→ (co κ (lookup σ ρ(x)) σ)

conditional:

Vector reference:

(ap vector-ref 〈vec(s, vs), i, v〉 σ κ) 7−→ (co κ σ(vs(i)) σ)

where 0 6 i 6 |vs|

side-effecting:

Box update:

(ap set-box! 〈boxv(a), v〉 σ κ) 7−→ (co κ void σ[a 7→ v])

and can even appeal to metafunctions:

5.3 the grammar of patterns and rules 83

Stack-based security:

(ev test P e0 e1 ρ σ κ) 7−→ (ev e0 ρ σ κ)

where tt = Call(OK,P, κ)

Our metalanguage must therefore support side-conditions, store
updates, and calls to metafunctions. To evaluate a rule on a machine
state, we first match the left hand side, apply the side-conditions, and
if the side-conditions don’t fail, we further evaluate the right hand
side. The informal Pattern 7−→ Template[optional side-conditions] mental
model of rules is replaced with a generalized form where the Template
can perform more computation than simply fill in the holes of a tem-
plated term. The notion of a Template is generalized to a simple lan-
guage of Expression that includes metafunction calls. Side-conditions
are written using the same expression language.

a pattern is like a term with named holes and simple predicates
to match shape. There are five (5) pattern kinds that fit into three
categories: predicate, binding, and structure.

There are three (3) predicate patterns. They are “predicate” pat-
terns because they check some property of a term in order to match:

1. Wild: matches anything (also written _);

2. Is-Addr: matches any explicit address;

3. Is-External(E) matches any External(E, v) term.

There is one (1) binding pattern, which puns as both reference and
binding. For simplicity, shadowing is not allowed.

4. Name(x,p): binds a metavariable to a term matching the given
pattern. If the variable is already bound, the matched term must
be equal to the term already bound.

A pattern that contains the an already bound variable, or the same
variable more than once, is called a non-linear pattern.

There is one (1) structure pattern that match terms structurally:

5. Variant(n, 〈p . . .〉) matches a term Variant(n, 〈t . . .〉) where p . . .
and t . . . are the same length and match pairwise, where any
metavariables bound in pi are in scope for following patterns.

The scope of a metavariable is the set of patterns and expressions in
which that metavariable may be referenced. In this language, scope
extends in a tree postorder traversal of a pattern to the following
expressions and side conditions. For example, in the following rule,

(X (Y n) n) 7−→ (Z n m)

[where m (W n 0)]

[where tt (Call test m n)]

84 a language for abstract machines

p ∈ Pattern ::= Name(x,p) | Variant(n,p) | Is-External(E)

| Is-Addr | Wild

e ∈ Expr ::= Ref(x) | Variant(n, tag, e) | Let(bu, e) | Call(f, e)

| Alloc(tag) | Deref(e)

rule ∈ Rule ::= Rule(p, e, bu)

bu ∈ BU ::= Where(p, e) | Update(e, e)

MF ::= User(rule) | ExtMF(emf)

emf ∈State× Term∗ → EvRes[Term] in meta-meta-language

x ∈Metavariable some set of names

n ∈Variant-Name some set of names

f ∈Metafunction-Name some set of names

tag ∈Tag some set

Figure 23: Patterns, expressions and rules

The n metavariable is in scope for the side conditions’ expressions
and the right-hand-side, and the m metavariable is in scope for fol-
lowing side conditions and the right-hand-side expression. The tt
pattern is a variant representing “true” and does not bind any metavari-
ables.

an expression is a control string that ultimately creates a term.
An expression can call a metafunction, allocate an address, or con-
struct a variant, or dereference the store. With the Let form, an ex-
pression may perform pattern matching and update the store before
evaluating the Let body expression. Both pattern matching and store
update do not result in a term. We therefore classify them as a sep-
arate type called a “binding/update” (BU). A rule’s side conditions
are also expressed using binding/updates.

Address allocation and variant construction are guided by external
parameters. These two forms thus carry an arbitrary tag to distin-
guish the forms for the external parameters to recognize15.15 A default tag is

the tree address of
the expression

through the
description of the
entire semantics.

a rule is like a pattern match “clause” in a language with pattern
matching. A rule consists of a left-hand-side pattern, a list of side-
conditions, and the right-hand-side expression. We say a rule “fires”
on a term if both the rule’s pattern match succeeds, and each of the
side-conditions’ pattern matches succeed. The result of a rule is the
evaluation of the right-hand-side expression in the environment of
both the left-hand-side pattern match, and all the pattern matches of
the side conditions. The entire grammar of (the abstract syntax of)
the language is shown in Figure 23.

5.4 term equality 85

5.4 term equality

Concrete equality defines structural equality of two concrete terms in
a store. Equality results in a yes or no answer.

The difficulty with equality is that terms can be cyclic due to ad-
dresses. Equality of cyclic terms is logically equivalent to the equality
of infinite terms. Thus, equality in our setting is a coinductive propo-
sition.

The usual trick to deciding coinductive propositions is to build a
set of “guarded truths.” In a sense, this is a set of hedges: if the orig-
inal proposition is true (which we don’t know yet), then all guarded
truths are true; if the original proposition is false, then the “guarded
truths” imply a falsehood. Operationally, we attempt to derive more
guarded truths until there is nothing more to derive (indicating con-
sistency), or we derive a falsehood (indicating our hedges don’t ac-
tually hold). If we ever derive a falsehood, we know the original
proposition (concrete equality of two terms) must have been false.

The magic of coinduction is that if we ever need to prove what we
are trying to prove while we’re proving it, then we’ve proved it16. To 16 Terms and

conditions may
apply.

visualize coinductive term equality graphically, consider that when
we’ve seen the same two terms while deciding equality, we’ve found
a cycle back to earlier in the term graph. The presence of this cycle
means that (for the path we followed) the equality of two terms does
not imply a falsehood. If we find that all structural comparisons we
make lead to either a bottomed out recursion or such cycle detection,
then the set of “guarded truths” is justified for later use.

The result type for the workhorse of concrete equality is the follow-
ing:

EqRes = option Pairs

ps ∈ Pairs = ℘(Term× Term)

The set of term pairs is our set of “guarded propositions of concrete
term equality.” We thread the set through subsequent equality tests
for possible cycle detection. If we find reason to contradict our set
of truths, for example we see 0 = 1, then we throw the set away and
return None. Consequently, if the overall result of equality is None,
then the two terms are not equal. If the result is some set of truths,
the two terms are equal.

We use guard(σ)(t0, t1, ps) to guard against cycles when comparing
t0 and t1 for equality, where ps is a set of term pairs. If 〈t0, t1〉 ∈
ps, then the two terms are coinductively equal. If a pair of terms is
previously unseen, we add it to the set and continue the structural
comparison in a helper function, tequal∗.

Figure 24 shows the definition of concrete term equality. The defi-
nition sometimes uses do notation for easily manipulating the option
(AKA Maybe) monad. The ps set is threaded through all successful

86 a language for abstract machines

tequal(σ)(t0, t1) = case guard(σ)(t0, t1, ∅) of

Some(ps) : tt

None : ff

where guard : Store→ Term× Term× Pairs→ EqRes

guard(σ)(t0, t1, ps) = if (t0, t1)
?
∈ ps then

Some(ps)

else tequal∗(σ)(t0, t1, ps∪ {(t0, t1)})

Let Ex abbreviate External and Vabs abbreviate Variant.
tequal∗ : Store→ Term× Term× Pairs→ EqRes

tequal∗(σ)(EAddr(a), EAddr(a), ps) = Some(ps)

tequal∗(σ)(IAddr(a), t1, ps) = guard(σ)(σ(a), t1, ps)

tequal∗(σ)(t0, IAddr(a), ps) = guard(σ)(t0,σ(a), ps)

tequal∗(σ)(Ex(E, v0), Ex(E, v1), ps) = E. ≡ (σ, v0, v1, ps)

tequal∗(σ)(V(n, t), V(n, t ′), ps) = V=(σ)(t, t ′)(ps)

tequal∗(σ)(t0, t1, ps) = None otherwise

where V= : Store→ Term∗ ×Term∗ → Pairs→ EqRes

V=(σ)(〈〉, 〈〉)(ps) = Some(ps)

V=(σ)(t0t, t ′0t ′)(ps) = do ps ′ ← guard(σ)(t0, t ′0, ps)

V=(σ)(t, t ′)(ps ′)

V=(σ)(_, _)(_) = None otherwise
Figure 24: Concrete term equality

equality checks because the whole judgment of equality is not yet
finished. A visual to keep in mind is a more traditional judgment
derivation; the higher up we are in the derivation, the larger the set
of term pairs is. An answer of None means that no judgment deriva-
tion of equality exists.

Equality of address terms depends on their equality modalities.
Identity compares for the same actual address.

External equality is trusted to do The Right Thing. Variants com-
pare pointwise with the helper V=, carefully threading through the
term pairs; mismatched lengths are caught by failure to match both
empty or both non-empty lists of terms. The V= function is curried
for a cleaner correctness proof.

5.5 pattern matching

A pattern can match a term in at most one way. If a pattern matches,
then its result is the extended environment of bindings. An indirect
address is automatically dereferenced if it is either bound via Name,

5.6 expression evaluation 87

M : Store→Pattern× Term×MEnv→MRes

M(σ)(Name(x,p), t, ρ) = if x
?
∈ dom(ρ) then

if tequal(σ)(ρ(x), t) then

M(σ)(p, t, ρ)

else None

else M(σ)(p, t, ρ[x 7→ demand(σ, t)])

M(σ)(Wild, t, ρ) = Some(ρ)

M(σ)(Is-Addr, EAddr(_), ρ) = Some(ρ)

M(σ)(Is-External(E), External(E, _), ρ) = Some(ρ)

M(σ)(Variant(n,p), Variant(n, t), ρ) = VM(σ)(p, t, ρ)

M(σ)(p, IAddr(a), ρ) =M(σ)(p,σ(a), ρ)

M(σ)(p, _, ρ) = None

where VM : Store→Pattern∗ × Term∗ ×MEnv→MRes

VM(σ)(ε, ε, ρ) = Some(ρ)

VM(σ)(p0p, t0t, ρ) = do ρ ′ ←M(σ)(p0, t0, ρ)

VM(σ)(p, t, ρ ′)

VM(σ)(_, _, ρ) = None

Figure 25: Pattern matching

or a pattern needs to inspect it. We call inspecting a term demanding
the term. We have a helper function to that effect:

demand : Store× Term→ Term

demand(σ, IAddr(a)) = σ(a)

demand(σ, t) = t

The pattern matcher is defined in Figure 25. The result type is ei-
ther Some extended metalanguage binding environment, or None to
signify no match exists:

MRes = option MEnv

ρ ∈MEnv = Metavariable→ Term

5.6 expression evaluation

Once a rule’s left hand side matches, the right hand side can perform
some computation to produce the following term. The computation
language is our small grammar of expressions.

We evaluate an expression with Ev defined in Figure 26. If eval-
uation gets stuck, say if a Let binding has a failed match, then Ev

88 a language for abstract machines

returns None. Otherwise, evaluation completes with both a term and
an updated store.

For reader clarity, we hide the store-passing and failure (stuckness)
in the MaybeState monad. An evaluation result is therefore

EvRes[T] = Store→MaybeState(Store, T)

where the underlying data structure is

MaybeState(Store, T) = None | Some〈σ, T〉

with operations

return(a) = λσ.Some(〈σ,a〉)
fail() = λσ.None

bind(Some(〈σ,a〉), f) = λ_.f(σ)(a)

bind(None, f) = λ_.None

MVariant(ς ,n, tag, t, ρ) = λσ.Some(mkV(σ,n, tag, t, ρ))

We see in the definition of expression evaluation (Figure 26) that
address allocation takes all of the store, the tag, and the current en-
vironment in order to compute the address. Allocation cannot side-
effect the store, as a result. However, variant construction with the
external parameter, mkV, can. The mkV parameter, as we will see in
the next chapter, is a critical component to provide control over the
state space abstraction.

A Let expression can both locally bind metavariables by using
pattern-matching, and globally update the store.

The binding/update forms in Let are also used for side-conditions,
so we have three result kinds rather than expression evaluation’s two.
If any expression evalution in a binding/update form gets stuck, then
the whole form is stuck. A stuck side-condition is an error in the se-
mantics description, and brings evaluation to a grinding halt: the
rule application itself is considered stuck. If a Where form’s pat-
tern doesn’t match, then the side-condition should signal a rule is
“unapplicable,” and we should try the next rule. Stuckness is distinct
from applicability. Rule- and side-condition evaluation therefore have
three possible outcomes:

Rule-result(a) ::= Stuck | Unapplicable | Fires(σ,a)

Another way to think about this trichotomy is that it encodes a be-
havior that is emergent in a compilation of “rules in order” to a “set
of rules.” In the set interpretation of the list of rules, say r, r0, r ′, the
side conditions on r0 have as a precondition the negation of all of
r’s left-hand-side patterns and side-conditions. In the compiled form,
the order we try the rules doesn’t matter, but any stuck side condition
means that the rest of the rule won’t evaluate.

5.6 expression evaluation 89

Ev : State→ Expr×MEnv→ EvRes[Term]

Ev(ς)(Ref(x), ρ) = return(ρ(x))

Ev(ς)(Alloc(tag), ρ) = do σ← get

return(EAddr(alloc(ς ,σ, tag, ρ)))

Ev(ς)(Variant(n, tag, e), ρ) = do t← Ev(ς)(e, ρ)

MVariant(ς ,n, tag, t, ρ)

Ev(ς)(Let(bu, e), ρ) = do ρ ′ ← Evbu(ς)(bu)(ρ)

Ev(ς)(e, ρ ′)

Ev(ς)(Call(f, e), ρ) = do t← Ev(ς)(e, ρ)

Evmf (ς)(f, t)

Ev(ς)(Deref(e), ρ) = do t← Ev(ς)(e, ρ)

case t of

EAddr(a) : do σ← get

return(σ(a))

_ : fail()

Ev : State→ Expr∗ ×MEnv→ EvRes[Term∗]

Ev(ς)(ε, ρ) = return(ε)

Ev(ς)(e0e, ρ) = do t0 ← Ev(ς)(e0, ρ)

t← Ev(ς)(e, ρ)

return(t0t)

Figure 26: Expression evaluation

90 a language for abstract machines

A Let expression treats Unapplicable and Stuck as synonymous,
since it is not “top-level.” The return, fail, stuck, and bind operations
for Rule-result are the following:

bind(Stuck, f) = λ_.Stuck

bind(Unapplicable, f) = λ_.Unapplicable

bind(Fires(σ,a), f) = λ_.f(σ)(a)

return(a) = λσ.Fires(σ,a)

fail() = λσ.Unapplicable

stuck() = λσ.Stuck

When in the Maybe monad, we implicitly treat non-Fires as None to
avoid notational bloat. Likewise, in the Rule-result monad, we implic-
itly treat None as Stuck, and Some as Fires.

metafunction evaluation Evmf , applies its user-provided rules
in order until it reaches a result or gets stuck. When we try ap-
ply a list of rules in order (until one fires), we are only concerned
with stuckness or firedness. Therefore, Evrule returns an EvRes[Term].
Rule evaluation and metafunction evaluation are defined in Figure 28.
All metafunction calls depend on the meta-meta-language’s runtime
stack to match calls with returns. In other words, a metafunction
returns when Evmf returns.

Each metafunction must be named. The semantics takes as a pa-
rameter a map Ξ : Metafunction-Name ⇀

fin
MF. An MF is the meaning

of a metafunction, which is either a list of rules (within the language),
or a meta-meta-language function that consumes the current machine
state and outputs a “result.” All metafunctions are in each other’s
scope, so general recursion is possible within expression evaluation.
The language makes no restrictions to force totality, but does distin-
guish divergence from stuckness.

A call to metafunction fwith arguments t creates a variant Variant(f, t)
for the rules to interpret.

5.6 expression evaluation 91

Evbu : State→ BU×MEnv→ Rule-Result(MEnv)

Evbu(ς)(ε, ρ) = return(ρ)

Evbu(ς)(Where(p, e), ρ) = do σ← get

case run(Ev(ς)(e, ρ),σ) of

Fires(σ ′, t) : case M(σ ′)(p, t, ρ) of

Some(ρ ′) : return(ρ ′)

None : fail()

_ : stuck()

Evbu(ς)(Update(ea, ev), ρ) = do ta ← Ev(ς)(ea, ρ)

tv ← Ev(ς)(ev, ρ)

σ← get

case ta of

EAddr(a) : do put σ[a 7→ tv]

return(ρ)

_ : stuck()

Evbu : State→ BU∗ →MEnv→ Rule-Result(MEnv)

Evbu(ς)(ε)(ρ) = return(ρ)

Evbu(ς)(bu0bu)(ρ) = bind(Evbu(ς)(bu0, ρ), Evbu(bu))

Figure 27: Side-condition evaluation

92 a language for abstract machines

Evrule : State→Rule× Term×MEnv→ Rule-Result(Term)

Evrule(ς)(Rule(p, e,bu), t, ρ) = do t← Ev(ς)(e, ρ)

σ← get

case M(σ)(p, t, ρ) of

Some(ρ ′) : do put σ

ρ ′′ ← Evbu(ς)(bu)(ρ
′)

Ev(ς)(e, ρ ′′)

None : fail()

Evrule : State→Rule× Term×MEnv→ EvRes[Term]

Evrule(ς)(ε, t, ρ) = None

Evrule(ς)(rule0rule, t, ρ) = case Evrule(ς)(rule0, t, ρ) of

Fires(t ′) : return(t ′)

Stuck : None

Unapplicable : Evrule(ς)(r, t, ρ)

Evmf : State→Metafunction-Name× Term∗ → EvRes[Term]

Evmf (ς)(f, t) = case M(f) of

User(rule) : Evrule(ς)(rule, Variant(f, t),⊥)
ExtMF(mf) : mf (ς , t)

Figure 28: Rule and metafunction evaluation

5.7 running a machine 93

5.7 running a machine

an abstract machine is

• S : ℘fin(Rule): a set of rules (its “reduction relation”);

• M : Metafunction-Name ⇀
fin

MF: the definitions of metafunctions;

• alloc : State× Store× Tag× Env → Addr: an address allocation
function;

• mkV : State×Store×Variant-Name×Tag×Term∗×Env→ (Store×
Term): a variant construction function;

• tick : State→ Time: a Time update function.

A machine “runs” by applying its reduction relation until stuck.
If a state has no next step, then we call the state “final.” If at most
one rule applies at any one time, then the set of rules is determinis-
tic. If not, the semantics is non-deterministic. For full generality, we
define partial functions step and run that do not assume the rules are
deterministic.

The step function is like Evrule, except it returns either Some set of
next states, or None because the input state is final.

Step-result = option ℘(State)

step : State→ Step-result

step(
ς︷ ︸︸ ︷

σ, t, τ) = step-all(ς , S, t,σ, ∅, ∅)

step-all : State× ℘(Rule)× Term× Store× ℘(Term)

→ Step-result

step-all(ς , ∅, t,σ, ∅) = None

step-all(ς , ∅, t,σ, next) = Some(next)

step-all(ς , {r}∪ S, t,σ, next) = case run(Evrule(ς)(r, t,⊥),σ) of

Fires(σ ′, t ′) : step-all(ς , S, t,σ, {〈σ ′, t ′, tick(ς)〉}∪ next)

_ : step-all(ς , S, t,σ, next)

With the ability to step according to all the semantic rules, we can
repeatedly apply step until all states are final. We do this by stepping

94 a language for abstract machines

each state in a set individually, to find both the next states and the
final states, until the set of states to step is empty:

run : State ⇀ ℘(State)

run(ς) = find-final({ς}, ∅, ∅)

find-final : ℘(State)× ℘(State)× ℘(State)→ ℘(State)

find-final(∅, ∅, final) = final

find-final(∅, next, final) = find-final(next, ∅, final)

find-final({ς}∪ todo, next, final) = case step(ς) of

None : find-final(todo, next, {ς}∪ final)

Some(Σ) : find-final(todo,Σ∪ next, final)

The assumptions required of external parameters in this meta-semantics
are that

1. allocation is fresh:

alloc(σ, tag, τ, ρ) /∈ dom(σ)

2. variant construction both conservatively extends the store and
creates an equivalent variant:

∀σ, ρ.∃σ ′, tv.mkV(σ,n, tag, t, ρ) = Some(σ ′, tv)

∧ ∀a ∈ dom(σ).tequal(σ ′)(σ(a),σ ′(a)) = tt

∧ tequal(σ ′)(tv, Variant(n, t)) = tt

3. external metafunctions maintain state well-formedness. A state
is well-formed if all the addresses it mentions are in the domain
of the store. Formalizing this requires reifying the runtime stack
to ensure that all live addresses within intermediate computa-
tion are kept live. I leave this informally stated and just say, “be
reasonable.”

This simple little language is our platform for introducing abstrac-
tion. We want to relax the conditions on our external parameters
such that the resulting semantics is a sound simulation of this con-
crete semantics. The abstract semantics we define in the next chapter
straddles the boundary of concrete and abstract interpretation: we
will have the ability to strengthen the external parameters to recover
the concrete semantics. The guarantee on top of soundness is that, if
the above conditions hold of the abstract semantics’ parameters, then
the resulting semantics has a bisimulation with the concrete seman-
tics. The next chapter thus strictly generalizes this one by giving a
semantics for concrete, abstract, and anywhere in between, abstract
machines.

6
A L A N G U A G E F O R A A M

This chapter reconstructs the previous chapter while wearing an ap-
proximation hat. We develop an abstract semantics of reduction that
natively supports the AAM abstraction tool: resource allocation.

6.1 introduction

We judge correctness of the semantics by guaranteeing that approxi-
mate allocation functions lead to approximate rule applications. For
example, if alloc freshly allocates, and âlloc is 0CFA-like with an appro-
priate structural abstraction of the freshly allocated addresses, then
we can expect that the simulation property holds like in AAM:

α(�) v ♦ � 7−→alloc �

∃�.♦ 7−→âlloc � and α(�) v �

In English, this states, “if ♦ approximates � and � concretely steps
to �, then ♦ abstractly steps to a � that approximates �.” Informally,
all concrete steps are overapproximated in the abstract. Therefore, if
a step does not exist in the abstract, it absolutely does not exist in
the concrete. This soundness guarantee means that we can prove the
absence of bad program behavior with a computable approximation.
The metalanguage semantics developed in this chapter is designed
with simulation in mind.

I will refer to rules that the metalanguage interprets as either “an
object semantics” or “user-provided rules.” Anything the metalan-
guage semantics uses but is left undefined is an external parameter, or
“user-provided X” where X is the parameter’s role (for example, alloc
is both an external parameter and a user-provided allocation func-
tion). I sometimes refer to a user as an analysis designer.

concept overview Four concepts we cover in this chapter are
the following:

1. weak equality of data structures and finite functions (terms). An
equality is “weak” if it is uncertain (due to approximation);

2. weak matching of non-linear patterns against terms. A match is
“weak” if

a) a non-linear pattern’s equality is weak;

b) an approximate term (which represents multiple terms)
has both a successful match and a failing match, or one
has a weak match;

95

96 a language for aam

3. weak evaluation of a simple expression language. An evaluation
is “weak” if

a) progress (conversely, stuckness) is uncertain due to weak
matching in side-conditions;

b) a store update uses an abstract address (a “weak update”).

4. worthwhile splitting of a state into multiple refined states, only
when it benefits the precision of a specific task.

The preferable alternative to a weak update is a “strong update,”
which can replace contents of the store instead of merging contents.
Merging is the enemy of precision. If a concrete store is Addr ⇀ T

(for some T) then an abstract store is Âddr ⇀ T̂ , where they are ad-

joined with a Galois connection 〈℘(T),⊆〉
γ
←
→
α
〈T̂ ,v〉. A strong update

is only justified if the address is fresh, but abstract addresses are not
necessarily fresh.

Equality, matching, and evaluation each have three parts:

1. a concrete semantics (no merging, and thus requires fresh allo-
cation), which we’ve already seen;

2. an abstract semantics (freshness not required, so merging may
happen) that exactly approximates 17 the concrete through struc-17 This is abstract

interpretation
vernacular. If f is a
“concrete” function

and f] is an
“approximate”
function, and

f ◦ γ = γ ◦ f], then
f] is called an exact

approximation.
Notice that

left-composition
with α cancels on

the right hand side if
〈γ,α〉 form a Galois

insertion.

tural abstraction; and

3. a splitting abstract semantics that splits the state space based on
store refinements.

chapter overview In Section 6.2 I explain the components of
an abstract abstract machine state and motivate their inclusion with
respect to the overall design space. I then show that we can “run”
machines in many different ways, with varying tradeoffs. I then ex-
plain the role of store refinements in Section 6.4. Before we jump into
all the technical details of how the semantics works, I motivate by ex-
ample the high level ideas behind the design choices for the available
tuning knobs in Section 6.5. Section 6.6 defines exteral descriptors for
external terms, and the abstract term Galois connection. Weak equal-
ity’s abstract components are fully developed as t̂equal, and t̂equalS
(S for splitting) in Section 6.7. Both weak matching (Section 6.8) and
expression evaluation (Section 6.9) are presented using only the split-
ting version for brevity; the non-splitting versions should be easily
recoverable by the reader.

The different ways of “running” are discussed in more detail in
Section 6.10. That section additionally specifies the external compo-
nents that can be plugged in to make an object semantics. We wrap
up in Section 6.11 with a discussion of candidates for the external
components.

N.B. Any missing proofs are long and are moved to the appendix.

6.2 representing an abstract abstract machine 97

6.2 representing an abstract abstract machine

An abstract abstract machine is still a collection of reduction rules for
transforming machine states. An abstract abstract machine state (ς̂) is

ς̂ ∈ Ŝtate = Ŝtore× T̂erm× T̂ime

The different components resemble their concrete counterparts, but
with extra support for approximation.

term :

t̂ ∈ T̂erm = PreTerm∪ {Delay(â) : â ∈ Âddr}∪NDTerm

An abstract term has more to it than a concrete term. A PreTerm
resembles a concrete term, and an NDTerm (nondeterministic term) is
an approximation of a set of PreTerm:

PreTerm ::= ŝt | External(E, v) where v ∈ E.ty

ŝt ∈ STerm ::= Variant(n, t̂) | EAddr(â) | IAddr(â, lm)

NDTerm ::= NDT(t̂s, Es)

where t̂s ∈ ℘(STerm)

Es ∈ External-map = External-Descriptor ⇀
fin

Meta-meta-value

where Es(E) ∈ E.ty

lm ∈ Lookup-modality

We will discuss External-Descriptor and NDTerm in further detail in
Section 6.6.

The indirect address in STerm has an additional component on top
of the concrete semantics’ IAddr: lm, for lookup modality. The lm
flag determines the subtly different store dereference semantics for
that address. We will see more of lm later in Section 6.5, but one
modality is to delay the lookup. We represent delayed lookup with
the Delay(â) form, like in Section 3.4.3.

I will sometimes use physics terminology to refer to an NDTerm
as a term in superposition, and choosing an abstract term from an
NDTerm is collapsing it.

Not every subset of PreTerms is representable, so we will have a

Galois connection 〈℘(PreTerm),⊆〉
Choose←
→
α
〈NDTerm,v〉. We will see this

Galois connection defined formally in Section 6.6.
For the sake of notational brevity, I will write NDT({ŝt . . .}) to mean

NDT({ŝt . . .},⊥), and write variants in prefix notation. I also option-
ally parenthesize nullary variants and hypothetical external descrip-
tors, so (Cons 1 Nil) is an abbreviation for

Variant(’Cons, 〈External(Number, 1), Variant(’Nil, 〈〉)〉)

98 a language for aam

We will write ⊥ to mean the empty map when the context expects a
map, or more generally the bottom element of a lattice.

store : An abstract store is a pair of a Heap and a Count:

σ̂ ∈ Ŝtore ::= 〈h,µ〉

h ∈ Heap = Âddr ⇀
fin

NDTerm

µ ∈ Count = Âddr ⇀
fin

N̂

N̂ = {0, 1,ω}

N̂ linearly ordered 0 < 1 < ω with t = max

An abstract store is in two pieces in order to straddle the bound-
ary between concrete and abstract. A concretely allocated address is
fresh; it has a unique identity. In the abstract, an address may be
allocated multiple times, which µ tracks. If the abstract address â
is previously unallocated then we know that it is fresh (µ(â) = 1). If
not, then the address denotes more than one concrete address and we
can’t say for certain that a self-comparison in the abstract is always
true in the concrete. Since “more than one” is all it takes to make im-
precise predictions, we overapproximate “more than one” as ω. An
address that is not fresh is called “used.” To model semantics that
use object identity or strong updates, or just run in “concrete mode,”
the freshness of an address is necessary information.

time :

T̂ime a user-provided set with no restrictions.

t̂ick : Ŝtate→ T̂ime a user-provided update function

The T̂ime component can be anything, but is often some representa-
tion of the trace history in order to inform allocation of the current
execution context. As a formality, T̂ime is required to be in Galois con-
nection with ℘(Time), but I will gloss over this unimportant detail.

We say that the T̂ime component distinguishes a state because dif-
ferent T̂ime values mean different state representations. The more
distinctions are made with the T̂ime space, the more the state space
is “split” or “partitioned.” The traces of states are correspondingly
partioned. Trace partitioning is an important component of high pre-
cision, low false-alarm analyses [60], as it better refines the context to
understand the execution of the current term.

6.3 overview of running

Applying all of a semantics’ reduction rules to a state is called “step-
ping” the state. Let’s call the function that does this step, which is

6.3 overview of running 99

defined in Section 6.10. The ways in which we step states gives us a
few notions of “running” a term in a given semantics:

• Nondeterministic run: repeatedly apply step on an arbitrarily
chosen output state until stuck; report the final state as the re-
sult:

run(t) = run∗(inject(t))

run∗(ς̂) = ς̂ if step(ς̂) = ∅
run∗(ς̂) = run∗(Choice-function(step(ς̂)) otherwise

Pro: depending on the choice function, we can pin-point bad
states without much overhead. Con: likely to diverge.

• All runs: treat the initial state as a singleton set “frontier” to
repeatedly step:

run(t) = run∗({t})

run∗(F) = case
⋃
ς̂∈F

step(ς̂) of

∅ : F
F ′ : run∗(F ′)

Pro: explores the whole state space. Con: diverges if the ab-
stracted program diverges.

• Loop-detecting: run like the previous mode, but don’t re-step
already seen states:

run(t) = run∗(∅, {t})

run∗(S, F) = case
⋃
ς̂∈F

step(ς̂) of

∅ : S
F ′ : run∗(S∪ F ′, F ′ \ S)

Pro: finite allocation and finite externals implies this will always
terminate with the reachable states. Con: does not represent
control flow for post-processing.

• Reduction relation-grounding: create a concrete representation
of the reduction relation as used to evaluate the given term:

run(t) = run∗(∅, {t}, ∅)
run∗(S, F,R) = case {(ς̂ , ς̂ ′) : ς̂ ∈ F, ς̂ ′ ∈ step(ς̂)} of

∅ : R
R ′ : run∗(S∪ π1(R ′),π1(R ′) \ S,R∪ R ′)

Pro: allows other tools to consume the reduction relation as a
model. Con: larger memory footprint.

100 a language for aam

Once we define equality, matching, and expression evaluation, we
get all these notions of “running” the machine. The notions that are
likely to diverge can always be given “fuel” to stop after the fuel runs
out. Semantics engineering tools like PLT Redex, the K framework,
and Maude, all provide multiple modes of running for user conve-
nience.

6.4 store refinements

User-provided trace partitioning is not the only way to split execu-
tion traces. The semantics additionally splits the state space based
on fresh address contents via store refinements. If an abstract state
(ς̂)’s store maps a fresh abstract address (â) to some set of terms
{t0, . . . , tn}, then we can refine that state into multiple states with
more specific stores:

ς̂[σ̂.h := ς̂ .σ̂.h[â 7→ t0]],
...

ς̂[σ̂.h := ς̂ .σ̂.h[â 7→ tn]]

Each state can be stepped individually with this more specific infor-
mation about the store. Refinements enable the semantics to be more
precise when comparing terms for equality, or in the presence of a
template creating a tuple like (x, x). The choice made for the first x
determines the choice for the second x.

For example, suppose we run the JavaScript program in Figure 29

with a collecting semantics that does no trace partitioning. The state-

1 function foo(b,x,y) {
var z;
if (b) { z = new x }
else { z = new y }
return z; }

6 var n = foo(unknown,
function () { this.bar = 0 },
function () { this.bar = 1 });

if ((n.bar + n.bar) % 2 !== 0) { launch_the_missiles() } �
Let’s say the unknown variable comes from an arbitrary context so
that the abstract semantics must explore each branch.

Figure 29: Example exemplifying the benefit of store refinements

ment after the if constitutes a join point, where the store and count
of the incoming states are joined together. The boolean condition is
too abstract to determine if it is always truthy or always falsy, so both
branches of the if must be analyzed. The contents of z are stored in
a fresh address, but at the join point its contents are either the object
{ bar: 0 } or the object { bar: 1 }. The object in n has a bar

6.5 design motivation by example 101

field that is either 0 or 1, so the addition will be 0, 1 or 2; the 1 means
that launch_the_missiles is called18. 18 Missile launch

protocol is not
written in
JavaScript[citation needed],
but bad things can
nevertheless happen
if contextual
assumptions are
invalidated by
overapproximation.

Store refinements allow us to leverage the knowledge that z’s ad-
dress is fresh. We can refine the store after the join point to split the
state space once we access n.bar. In one case, n.bar will always
mean 0, and in the other always 1. Both refinements lead to an even
sum, so we can show that launch_the_missiles is never called.

the theory If an address has only been allocated once (is “fresh”),
then it can be treated as a concrete entity. Allocations are counted, so
an address â is fresh if µ(â) = 1. Freshness information is necessary
for strong equality judgments. Strong equality judgments are cru-
cial to support concrete execution with the same semantic framework
we use for abstract execution. In addition to strong equality, fresh
addresses allow the semantics to perform case splitting on a fresh
address’s contents. If an address is fresh but the store maps it to a
non-singleton set, {b0,b1, . . .}, then the choice of bi on lookup can be
written back as a singleton, {bi} (and all choices are explored). This
write-back is called “refining” the store.

A fresh address can map to a non-singleton set when control flow
merges at one point, say after an if statement: If we need to read the
address’s contents, we can split the state space based on which of the
terms is chosen. Going forward, the different states’ stores will map
the fresh address to the respective choice.

This might seem odd or wrong; how can we still say z’s address is
fresh when a concrete allocator is free to assign different addresses at
the different new expressions? Fresh addresses’ physical identities are
unimportant in the same way as binders are in syntax. Therefore they
can be renamed to match, and thus the abstract address still identifies
one concrete address, but the address can map to multiple values.

A map from fresh addresses to their choices is called a Refinement.

δ ∈ Refinement = Âddr ⇀
fin

PreTerm

Refinements are only valid on fresh addresses and actual store con-
tents, so we use the following definitions for well-formedness (“δ
refines σ̂”), and for the family of sets of all well-formed refinements:

refines(δ, 〈h,µ〉) = ∀â ∈ dom(δ).µ(â) = 1∧ δ(â) ∈ Choose(h(â))

Refinements(σ̂) = {δ : refines(δ, σ̂)}

6.5 design motivation by example

In the abstract world, function evaluation and implicit addresses have
important new roles to play. Let’s take a look at some rules we want
to write, how we want them to be abstracted, and how our semantics’
non-standard concepts get us there.

102 a language for aam

6.5.1 Overview of explicit versus implicit addresses

One way to interpret an address is as just a stand-in for what it points
to. Under this interpretation, a pattern match implicitly dereferences
the address and continues matching on the stored contents. For exam-
ple, a language implementation will implicitly store-allocate nested
data when introducing a cons, and implicitly dereference the store
when eliminating via car or cdr.

Alternatively, we can view an address is an object that the seman-
tics can explicitly manipulate with lookups and updates. We need to
instruct the pattern matcher to not dereference and instead bind the
address itself. For example, consider the CESK machine’s function
call rule19, which explicitly allocates and binds an address:19 An abbreviated

form for illustrative
purposes. ς︷ ︸︸ ︷

v, ρ,σ, appR(λ x. e, ρ ′):K 7−→ e, ρ[x 7→ a],σ[a 7→ (v, ρ)],K

where a = alloc(ς , x)

All binding uses pattern matching, so a’s binding is the result of
matching a trivial pattern. Since a came from an explicit alloc, it is
an explicit address. If the allocated address were implicit, the pattern
matcher would immediately try to dereference the address, causing
evaluation to get stuck.

Dual to explicit allocation is explicit dereference; in the CESK ma-
chine this is in variable reference:

x, ρ,σ,K 7−→ v, ρ ′,σ,K

where (v, ρ ′) = σ(ρ(x))

Let’s discuss the cons, car, cdr example I hinted at for motivating
implicit dereferencing. We would like to write the obvious rule for
interpreting the cons primitive to construct the consv value:

ap(cons, 〈v0, v1〉,σ, κ) 7−→ co(κ, consv(v0, v1),σ)

A rule like this, with a structural consv value, can create unbound-
edly many states and cause the semantics to diverge20. For example,20 Which is highly

undesirable for an
analysis.

a program like the following might diverge in a naive analysis:

(define (bad x) (bad (cons ’more x)))
(bad ’start) �

If we don’t introduce some approximation, the bindings for x keep
growing:

’start,

(cons ’more ’start),

(cons ’more (cons ’more ’start)), . . .

6.5 design motivation by example 103

The motto of AAM is to “store-allocate recursion,” but this is more
accurately understood as, “disallow unbounded nesting of data by
indirecting through store allocations.” Suppose we had a way to in-
terpret the above “obvious” rule as the following rule:

ap(cons, 〈v0, v1〉,σ, κ) 7−→ co(κ, consv(aA,aD),σt [aA 7→ v0,aD 7→ v1])

where aA = alloc(ς , car),aD = alloc(ς , cdr)

In this case, a finite allocation strategy leads to finitely many repre-
sentable cons cells. Finite allocation with this rule protects us from
the above example of divergence. We can’t just rewrite the obvious
rule to this rule, because we want to leave the car (and similarly, cdr)
rules unchanged as

ap(car, 〈consv(v0, v1)〉,σ, κ) 7−→ co(κ, v0,σ)

Notice the mismatch between v0 here and aA above. Since the consv
contains addresses, but the car rule’s result expects an address, we
need the rule to implicitly dereference the address in the consv. I
said above that naming an address in a rule is by definition explicit,
so the rewritten rule has no way to mark aA or aD as implicit. Thus,
the only way to introduce an implicit address is within implicit allo-
cation.

When we allocate something like a cons, the semantics calls an ex-
ternal parameter, mkV, for allocating variants. When we construct a
consv with values v0 and v1, the mkV parameter can choose to repre-
sent the variant as (consv IAddr(aA, lm) IAddr(aD, lm)), meaning
aA and aD will be implicitly dereferenced as guided by lm, to be dis-
cussed below. Then mkV can update the store to map addresses aA
and aD to v0 and v1 respectively.

Another behavior mkV could have is to simply construct (consv
v0 v1) structurally. An analysis designer may know an invariant
that some structural constructions are safe to perform - they won’t in-
troduce divergence. For example, an n-ary function application will
create a continuation frame that contains the list of evaluated func-
tion and arguments. We know a priori that the list is bounded by
the syntactic form’s list of expressions. The program is a one-time
input to start the analysis at an initial state, so there are a finite num-
ber of function application expressions with finitely many argument
expressions in each.

An IAddr can be implicitly dereferenced in subtly different ways.
One way we might expect the car rule to be interpreted is the follow-
ing:

ap(car, 〈consv(aA,aD)〉,σ, κ) 7−→ co(κ, v0,σ)

where v0 ∈ σ(aA).

104 a language for aam

One might assume the “where” clause should nondeterministically
split the execution on the values stored at aA, resolving its nondeter-
minism. However, immediately splitting execution on address con-
tents leads to the explosive and usually unproductive fan-outs that
we saw before we added lazy nondeterminism in Section 3.4.3.

An implicit address therefore has a modality to guide the pattern
matcher’s action when binding an implicit address to a variable. A
lookup modality is one of:

• ’resolve: immediately split the state space based on the choice
of term out of the stored NDTerm. Refine the store to the chosen
term iff the address is fresh.

• ’deref: dereference the address to get the stored NDTerm with-
out splitting the state space. Matching on it later will split in
order to resolve the nondeterminism.

• ’delay: delay dereferencing the address. The address is treated
like ’resolve when a term is matched with a pattern that in-
spects structure (not wild nor named wild).

The second two lookup modalities are the candidate implementations
of lazy nondeterminism discussed in Section 3.4.3 as, respectively,
option 1 and option 2. The lookup modalities drive how the seman-
tics should refer to an address’s contents, so the expression for store-
lookup also has a lookup modality.

6.5.2 Weak matching: rule ordering and prediction strength

Abstract addresses and abstract terms motivate the notion of weak
matching. Equality judgments from non-linear patterns can be inex-
act: rules may fire, leading to nondeterministic state exploration. For
example say we have a metafunction, rem, that removes duplicate
adjacent elements of a list:

(rem ’()) 7−→ ’()

(rem (cons x ’())) 7−→ (cons x ’())

(rem (cons x (cons x lst))) 7−→ (cons x Call(rem, 〈lst〉))
(rem (cons x (cons y lst))) 7−→ (cons x

Call(rem, 〈(cons y lst)〉))

But we may not be able to say with certainty in the third rule that the
adjacent elements are equal. Say we have a call

Call(rem, 〈(cons a (cons a (nil)))〉)

where the store contains [a 7→ NDT({0, 1})] with a used. Since we
can’t refine a to one of the two numbers it maps to, possible con-
cretizations of the input include

6.6 externals and NDTerm 105

(cons 0 (cons 0 (nil))) and

(cons 0 (cons 1 (nil))).

Thus both the third and fourth rule may fire, leading to the nondeter-
minism. If a were fresh, then the third rule would strongly fire, with
two different store refinements mapping a to either 0 or 1.

Now that we have covered the high level concepts, let’s talk details.
First, let’s discuss the rest of the structure of terms.

6.6 externals and NDTerm

An external value is paired with an external descriptor, which contains
the operations the semantics needs to interact with external values
(e.g., equality, join, ordering). The semantics handles the switch be-
tween abstract and concrete seamlessly for non-external terms, but
an external term itself might have a different representation for the
two.

external descriptors An external descriptor contains its con-
crete equality operation as well as the following operations and “types”:

• “type” ty: Racket has one type: Racket value. To make concep-
tual matters clearer here though, I write ty for an intended fla-
vor of Racket value that represents the external’s abstract value
representation.

• “type” concrete: the flavor of Racket value that represents the
external’s concrete value representation.

• t : Ŝtate×Refinement× ∆̂Store→ ty× ty→ ty:
takes some context, including evaluation’s changes to the store
(defined in Section 6.9), and two values to produce a combina-
tion of the two that soundly represents both. The function need
not be a lattice-theoretic “join” (least upper bound). In fact, to
guarantee convergence, t should not produce any infinitely as-
cending chains of values21. We use t for notational simplicity. 21 This is generally

referred to as a
“widening” in
abstract
interpretation
literature, and is
commonly notated
∇.

• v⊆ ty× ty: approximation ordering

• ≡̂ : Ŝtate→ ty× ty→ ̂EqResM:
takes some context and two values and produces the output
type for abstract term equality (definition upcoming, along with
why we need the set of term pairs).

• ≡̂S : Ŝtate→ ty× ty→ ̂EqResMS:
like the previous, but for splitting abstract term equality.

• γ : ty→ ℘(concrete): the Galois connection’s concretization func-
tion, which we use only in proofs.

106 a language for aam

• ≡: Store× concrete× concrete× Pairs→ EqRes:
judges the equality of two concrete external values, returning
the concrete equality result type from the previous chapter.

nondeterministic terms An NDTerm is intended to be a rep-
resentation of a set of PreTerms. However, we cannot simply use a set
representation because a PreTerm may contain external values. Exter-
nal values may be drawn from an unbounded space, so a set of them
may grow unbounded. Therefore, for external values v and v ′ with
the same descriptor, E, the set {External(E, v), External(E, v ′)} is rep-
resented as a safe (overapproximating) combination External(E,E. t
(v, v ′))22. A set of PreTerm can include external values from different22 The “no infinite

ascending chains”
condition provides
that t has to stop

growing the values
eventually.

descriptors, so NDTerm represents the set of external values as a map
from external descriptor E to value of type E.ty.

The Galois connection between NDTerm and ℘(PreTerm) is the fol-
lowing:

〈℘(PreTerm),⊆〉
Choose←
→
α
〈NDTerm,v〉

Choose(NDT(t̂s, Es)) = t̂s∪ {External(E, v) : Es(E) = v}

α(S) = NDT({ŝt ∈ S},[E 7→
⊔

External(E,v)∈S

v : External(E, _) ∈ S])

6.7 term equality

Concrete terms are either equal or not. In the abstract though, equal-
ity can return weak “yes and no” answers. Equality in the abstract
can represent both answers because abstract an abstract term can rep-
resent multiple concrete terms. One choice from a pair of two terms’
concretizations can be equal, and yet another choice can be unequal.
The possibilities are thus,

• strongly equal: when all concretizations are concretely equal;

• strongly unequal: when all concretizations are concretely un-
equal;

• weakly equal: when (exactly) the previous two don’t apply, or
(soundly) whenever.

An abstract equality function is an exact approximation when it out-
puts a weak result exactly when there is no strong result.

overview We first define an abstract term equality in Section 6.7.1
that gives the appropriate strong or weak result. Not all exact approx-
imations (defined in Section 6.1) are created equal; in Section 6.7.2 we
show that in the context of state space exploration, we can do better

6.7 term equality 107

than exact. Then in Section 6.7.3 we define and prove useful prop-
erties about worthwhile refinements. We finish in Section 6.7.4 with
another exact approximation of term equality that additionally splits
the state space if it is worthwhile to do so.

An executable form of the semantics (in Haskell) in this chapter is
available in Chapter 2. I take notational shortcuts in this chapter to
not overburden the exposition.

6.7.1 Abstract term equality

We have a gold standard in hand for structural term equality. If we
had the concretization function, could we just use concrete equality
for abstract equality? Perhaps the following diagram would work:

Abstract-Input
γ- ℘(Concrete-Input)

map(tequalC)- ℘(Boolean)
α- ̂Equality

where

̂Equality ::= Equal | Unequal | May

α({tt}) = Equal

α({ff}) = Unequal

α({tt, ff}) = May

An equality on abstract terms is an exact approximation if it performs
the same thing as this diagram. The problem with a direct approach
like this is that γ routinely produces infinite sets. The middle arrow
takes a while to give an answer in that case.

We can be more clever, but when we switch over to abstract execu-
tion, we raise some difficulties and questions:

1. an abstract address â can be used, so address identity is lost;

â
?
= â can represent both true and false concrete equality com-

parisons;

2. a structural or delayed address maps to a representation of a set
of terms, so they all have to be equal in order for a strong result;

3. if we have a fresh address â that maps to NDT({0, 1}) appear
twice in a term, we have to remember â’s choice of value within
equality;

4. do we remember the choice of value for a fresh address even
after checking equality?

Let’s look at some examples that illuminate these issues.

108 a language for aam

example equalities Abstract term equality returns one of three
results: strongly equal (Equal), strongly unequal (Unequal), or weakly
equal (May). In the following examples of each kind of result, I use =,
6=, and ≈ to stand for strongly equal, strongly unequal, and weakly
equal, respectively:

• strongly equal:

– no approximate structure: (unit) = (unit)

– fresh address identity: EAddr(â) = EAddr(â) when µ(â) =
1.

– fresh address structural equality:
IAddr(â, ’deref) = IAddr(â, ’resolve) when µ(â) = 1

and

σ̂.h(â) = NDT({(unit), (top)},⊥)

Recall that a fresh address denotes exactly one concrete
address, say a. During concrete execution, a may hold ei-
ther (unit) or (top), but certainly not both. Say a maps
to (unit); since there are no other concretizations of â in
the concrete, we can forget about (top) and keep running
with [a 7→ (unit)]. In the abstract, this means we have a
finite braching factor to search for better equality predic-
tions given fresh addresses.

Call this store σ̂2 for later examples.

• strongly unequal:

– structure mismatch: (A EAddr(â))6= (B EAddr(â))

– address non-identity: EAddr(â) 6= EAddr(b̂)

• weakly equal:

– used address identity: EAddr(â) ≈ EAddr(â) when µ(â) =
ω

– fresh address structural (in)equality: IAddr(â, ’deref) ≈
(unit) when µ(â) = 1 and we have σ̂2

– used address structural equality:
IAddr(â, ’deref) ≈ IAddr(â, ’deref) when µ(â) = ω

and we have σ̂2

Most of these examples should not be surprising. The last bullets
of strongly equal and weakly equal are worth elaborating.

If an address is fresh, but maps to a representation of more than
one term, we still have a strong equality. Say â represents a single a
in the concrete. The only store concretizations (restricted to α−1(â))
are

σ0(a) = (unit), and

σ1(a) = (top).

6.7 term equality 109

Therefore the self equality of the structural address must be strongly
equal in order to have an exact approximation.

In the same setup, except with µ(â) = ω, there can be unboudedly
many concretizations of â and its corresponding mappings23. For 23 While α must be

a surjection, it’s not
required that each
abstract address
have an unbounded
preimage in α. It is
the case that both the
kCFA and mCFA
addressing schemes
have unboundedly
many concrete
addresses for each
abstract address.

example, if α−1(â) = {a0,a1, . . .}, then we have these concretizations:

[a0 7→ (unit)]

[a0 7→ (top)]

[a0 7→ (unit),a1 7→ (top)]

[a0 7→ (top),a1 7→ (unit)]

...

[a2i 7→ (unit), . . . ,a2i+1 7→ (top), . . .]
...

Then the â on the left of the equality can be a0, and the â on the
right can be a1. In the context of some stores, concrete term equality
judges the two structural addresses as equal, whereas in other stores,
the two are unequal.

internal refinements Although equality is with respect to a
store, an abstract store represents multiple concrete stores. Any in-
spection of a fresh address’s contents must collapse its nondetermin-
ism in order to get the equality behavior for fresh structural addresses
that we expected in the above examples. Collapsing nondeterminism
splits our abstract store into multiple representations that, all together,
have the same concretization. The split representation gives us more
power to identify the contents of fresh addresses.

Our function that decides abstract term equality thus internally
splits its representation of the store with store refinements. Not all ad-
dresses need to have nondeterminism collapsed in order to determine
the equality of two abstract terms; the fewer split stores we have to
consider, the better for efficiency. Our function that decides abstract
term equality therefore works over a set of store refinements, that,
once applied to the current store, represent the split space of stores.
Similar to concrete equality, we additionally carry a set of term pairs.
A term pair represents guarded equality of two terms with respect to
the store refinement which led to the decision. If we find that both equal-
ity and inequality are possible outcomes, we can forget all the store
refinements involved, since we’ve already lost the precision we were
trying for.

Thus, strong equalities are witnessed by a map from store refine-
ment to a set of term pairs. Strong inequalities are witnessed only
by the original store refinement since we don’t need to carry forward
any refinements to continue to witness an inequality. Weak equalities
are witnessed by a set of term pairs.

110 a language for aam

The map from store refinement to set of term pairs must adequately
represent the entire store. Our notion for “adequate” is formalized
by the definition of a cut of the set of all store refinements.

cutting the refinement space A cut, C, of a finite poset 〈P,v
〉, is a set of elements that separate P into elements either less than
or greater than elements of C. In other words, each element of P is
comparable to some element of C. Additionally, no element of C is
comparable to any other element of C (each chain is “cut” at exactly
one element).

Comparable

c v p∨ p v c
c~ p

Cut

∀p ∈ P.∃c ∈ C.c~ p ∀δ, δ ′ ∈ C.δ~ δ ′ =⇒ δ = δ ′

Cut(C, 〈P,v〉)

A cut of store refinements maintains the same overall concretiza-
tion, but allow us to split the space in the abstract:

Theorem 27 (Concretization split). For allC such that Cut(C, Refinements(σ̂)),
γS(σ̂) =

⋃
{γS(σ̂ J δ) : δ ∈ C}

The notation for “apply refinement δ to store σ̂” is σ̂ J δ. The
operation casts the PreTerm in δ to an NDTerm and strongly updates
the store.

〈h,µ〉 J δ , 〈h / λâ.dδ(â)eh,µ〉

where f / g , λx.x
?
∈ dom(g)→ g(x), f(x)

dExternal(E, v)eh = NDT(∅, [E 7→ v])

dDelay(â)eh = h(â)

dNDT(t̂s, Es)eh = NDT(t̂s, Es)

dŝteh = NDT({ŝt},⊥) otherwise

A minimal cut is preferable since it less eagerly splits the state
space, but is not necessary.

The example above of “fresh structural address identity” requires
that we search both refinements

[â 7→ (unit)], and

[â 7→ (top)]

in which case our equality result would have a map of the first refine-
ment to some set of term pairs, and the second refinement to some
other set of term pairs. The sets of term pairs are separated this way
to denote, “the equality of these pairs of terms is consistent with a
store refined by the given refinement.”

6.7 term equality 111

Must(R)t Fail = May(squash(R))

Must(R)tMust(R ′) = Must(λδ.R(δ)∪ R ′(δ))
Must(R)tMay(ps) = May(ps∪ squash(dp))

May(Us)t Fail = May(Us)

May(Us)tMay(Us ′) = May(Us∪Us ′)

Failt Fail = Fail

where

squash(R) =
⋃

rng(R)

Figure 30: Join operation for Res[U]

We thus have the following intermediate equality result type:

êq ∈ ÊqRes = Res[T̂erm× T̂erm]

where Res[U] ::= Fail | Must(R) | May(Us)

R ∈ Refmap[U] = Refinement ⇀
fin
℘(U)

Us ∈ ℘(U)
u ∈ U

We will use the following metavariables for the instantiated generic
forms:

dp ∈ Refmap[T̂erm× T̂erm] and ps ∈ P̂airs = ℘fin(T̂erm× T̂erm)

The result type is embedded in a not-quite-monad type (we get mon-
ads in pattern matching and evaluation):

ˆem ∈ ̂EqResM = Refinement× P̂airs→ ÊqRes

We require that the domain of a Refmap must cut the set of refine-
ments for the current abstract store.

When we find an inequality, we throw away all the term pairs
because they entail a falsehood. The dp map splits up the sets of
“guarded truths” by the refinement used to justify them.

If we find that both strong equality and strong inequality are pos-
sible, then we join the results to jump to a May equality. To make
ÊqRes a join semilattice, we pointwise-union the sets of term pairs in
Must and May. The join operation is the symmetric closure of the
rules in Figure 30.

For combined equality for terms like Variants, we will want to se-
quence our operations to thread ps through. The equality sequencing
operation is defined in Figure 31. If any individual term is strongly

112 a language for aam

seq : ̂EqResM→ ̂EqResM→ ̂EqResM

seq(ˆem, ˆem ′)(δ, ps) = case ˆem(δ, ps) of

Fail : Fail

May(ps ′) : weaken(ˆem ′(δ, ps ′))

Must(dp) :
⊔

δ ′∈dom(dp)

ˆem ′(δ ′, dp(δ ′))

where weaken(Must(dp)) = May(squash(dp))

weaken(r) = r otherwise

success = λ(δ, ps).Must([δ 7→ ps])

maybe = λ(δ, ps).May(ps)

fail = λ(δ, ps).Fail

Figure 31: Operations for ̂EqResM

unequal, the entire equality is strongly unequal, so the operation
should short-circuit on Fail. Otherwise, if any individual term is
weakly equal, then regardless of the other terms in the variant, the
entire equality is weakly equal. Since Must splits the search space up
by refinement, we apply f to each refinement and its corresponding
set of term pairs.

note on notation : In meta-meta-language definitions such as
that of ̂tequalaux, I use resolvable as both a (meta-)pattern synonym for

IAddr(_, _)∨ Delay(_)∨ NDT(_, _), and

in the right-hand-side, resolvable refers to the term that (meta-)matches
the (meta-)pattern.

A term (meta-)matching resolvable has an associated resolution op-
eration, resolve:

resolve : Ŝtore→ T̂erm× (T̂erm→ ̂EqResM)→ ̂EqResM

resolve(σ̂)(IAddr(â, _), f) = select(σ̂, â, f)

resolve(σ̂)(Delay(â), f) = select(σ̂, â, f)

resolve(σ̂)(NDT(t̂s, Es), f) = λ(δ, ps).
⊔

t̂∈Choose(NDT(t̂s,Es))

f(t̂)(δ, ps)

6.7 term equality 113

where

select : Ŝtore× Âddr× (T̂erm→ ̂EqResM)→ ̂EqResM

select(σ̂, â)(δ, ps) = if â
?
∈ dom(δ) then

f(δ(â))(δ, ps)

else if σ̂.µ(â) ?
= 1 then⊔

t̂∈Choose(σ̂.h(â))

f(t̂)(δ[â 7→ t̂], ps)

else
⊔

t̂∈Choose(σ̂.h(â))

f(t̂)(δ, ps)

is how we interpret addresses in the context of the store refinement.
If we already know the value of a fresh address, we use it. If we
don’t yet know, and the address is fresh, we internally split the search
space by creating different store refinements that assign the address
its possible values. Otherwise, the address is “used” and can mean
any one of its mapped terms without splitting the search.

The bind and resolve operations allow us to easily define abstract
term equality, t̂equal:

t̂equal : Ŝtate× Ŝtore→ T̂erm× T̂erm→ ̂Equality

where ̂Equality ::= Equal | Unequal | May.

The full definition is in Figure 32.
The internal refinements that equality builds have extra structure

that this definition does not leverage. If we determine that the reasons
for strong equality and strong inequality don’t overlap, then we can
learn more about the state of the store once we consume an equality.
We will see in the next subsection that sometimes it’s advantageous
to not immediately throw up our hands when we determine that both
equality and inequality are possible.

6.7.2 Better than exact: Term equality with splitting

Equality is not the only role of our meta-semantics; results of equality
must be consumed to guide further computation. If we can’t prove two
terms are definitively equal or unequal, in some cases we perform a
case split, and learn something about the shape of the store in either
case24. This means that (prehaps unintuitively) the way we consume 24 Readers familiar

with Typed Racket
can relate this to
occurrence typing.

an equality can affect the precision of our semantics in later steps of
computation. Thus, an “exact” abstract term equality can be less pre-
cise than another “exact” abstract term equality in the grand scheme
of the whole analysis. For example, consider a program

(if (equal? a b)

114 a language for aam

For notational brevity, let V = Variant, and Ex = External.

t̂equal(ctx)(t0, t1) = ̂equality(ĝuard(ctx)(t0, t1,⊥, ∅))

where ̂equality(Must(dp)) = Equal

̂equality(Fail) = Unequal

̂equality(May(ps)) = May

ĝuard(ctx)(t0, t1)(δ, ps) = if (t0, t1)
?
∈ ps then

success(δ, ps)

else ̂tequalaux(ctx)(t0, t1)(δ, ps∪ {(t0, t1)})

̂tequalaux(ς̂ , 〈_,µ〉)(EAddr(â), EAddr(â)) = identical?(µ, â)
̂tequalaux(ctx)(resolvable, t1) = resolve(resolvable, λt ′0.ĝuard(ctx)(t ′0, t1))
̂tequalaux(ctx)(t0, resolvable) = resolve(resolvable, λt ′1.ĝuard(ctx)(t0, t ′1))
̂tequalaux(ctx)(Ex(E, v0), Ex(E, v1)) = E.≡̂(ctx)(v0, v1)
̂tequalaux(ctx)(V(n, t), V(n, t ′)) = VA(ctx)(t, t ′)
̂tequalaux(ctx)(t0, t1) = fail otherwise

where

identical?(µ, â) = if µ(â)
?
6 1 then

success

else maybe

VA : Ŝtate× Ŝtore→ T̂erm
∗
× T̂erm

∗
→ ̂EqResM

VA(ctx)(〈〉, 〈〉) = success

VA(ctx)(t0t, t ′0t ′) = seq(ĝuard(ctx)(t0, t ′0),VA(ctx)(t, t ′))

VA(ctx)(_, _) = fail otherwise

Figure 32: Abstract term equality

6.7 term equality 115

(car a)
(not (cdr b))) �

where

a is bound to (cons F F),

b is bound to (cons F IAddr(addr, ’delay)), and

addr maps to NDT({T, F},⊥) in the store.

Regardless of the freshness of addr, the first equality is true and false,
given different concretizations of b.

precise for one step The first equality is a weak May result to
represent that the concrete equalities were both true and false. The
abstract semantics must then explore each of the “then” and “else”
branches. The “then” branch evaluates to F. The “else” branch eval-
uates to either T or F; if addr is fresh, then the state space gets split
when not inspects the contents of addr.

precise for more steps If addr is fresh, we could refine the state
space to collapse addr to either T or F. We test equality in the split state
space and determine that in one world, a and b are strongly equal,
and in the other world, a and b are strongly unequal. If we keep
stepping the computation in these parallel worlds, we find that the
“else” branch evaluates only to F. This happens because the “else”
branch is only reachable when the store has addr mapped to T.

If we could (magically) produce some number of refinements up
front, apply them, and query t̂equal in the split space, that’d be one
way to get trace partitioning. What is this magic, and how do we
determine that it’s not making us do useless work?

6.7.3 Worthwhile splitting

Suppose we had our hands on some magic partitioning. We might
ask ourselves what properties it should have.

For one, it should find refinements that produce only strong results
when possible. We should only get a May result when no partitioning
yields only strong results. The full spectrum of equality judgments
is what happens when we apply each possible refinement. To first
approximation, we will say this is tequalS:

tequalS?(ς̂ , σ̂)(t̂0, t̂1)(δ) = tequal∗S?(ς̂ , σ̂)(t̂0, t̂1)(δ, ∅)
where

tequal∗S?(ς̂ , σ̂)(t̂0, t̂1)(δ, ps) = [δ ′ 7→ ̂tequalaux(ς̂ , σ̂)(t̂0, t̂1)(δ ′, ps)

: δ ′ ∈ Refinements(σ̂), δ v δ ′]

116 a language for aam

The refinements considered for non-splitting equality must be exten-
sions of the base refinement, δ. Applications of store refinements are
strong updates that inject into NDT.

This definition is obviously over-eager, and less obviously insuffi-
cient. Many refinements will be irrelevant to the results, meaning the
state space is split before it needs to be. We also don’t want to split the
state space at all if we still have to consider a May equality. There can
be some refinements that are too small to make a strong prediction
(e.g., no refinement at all: ⊥), so if there are any May results, there
still might be strong results.

A refined equality P is a function

P : Refinements(σ̂)→ ̂Equality

Let’s say that if C is a cut of (the domain of) an equality result P,
and all refinements in C map to a non-May answer in P, then we say
that C is an almost worthwhile cut. If P is additionally antitone (less
refined means more imprecise), then C is a worthwhile cut. We need
the antitone property on P to make sure that we don’t make some ab-
surd jump from a refinement δ justifying Equal to a larger refinement
justifying Unequal or May. Refinements have the property that once
they’re precise enough for a strong result, no extra information will
refute or weaken it.

Worthwhile cut

Cut(C, dom(P)) P antitone ∀δ ∈ C.P(δ) 6= May

worthwhile(C,P)

If there are no worthwhile cuts, then tequalS(ς̂ , σ̂)(t̂0, t̂1, δ) = May.
There can be several (even minimal) worthwhile cuts, so tequalS is
not yet a function. We need a function to split the state space for the
operational semantics written with a step function. The definitions
here do give us a space of acceptable answers, so that tequalS need
only return some worthwhile cut if it exists:

tequalS(ς̂ , σ̂)(t̂0, t̂1, δ) ∈ P̃ ?
= ∅ → {May}, P̃

where P = tequalS?(ς̂ , σ̂)(t̂0, t̂1)

P̃ = {P|C : worthwhile(C,P)}

For inductive reasoning, we do need to have a connection between
combinations of tequalS? and combinations of terms. We say that
two worthwhile cuts are conflicting if elements that map to different
polarities are comparable:

worthwhile(C,P)
worthwhile(C ′,P ′) ∃δ ∈ C, δ ′ ∈ C ′.δ~ δ ′ ∧ P(δ)t P ′(δ ′) = May

conflicting(C,P,C ′,P ′)

6.7 term equality 117

Sets of refinements C and C ′ are combined by taking the max of
all comparable refinements. For example, if t0 and t1 are equal with
a ⊥ refinement, but t ′0 and t1 are equal with a [â 7→ 0] refinement,
then NDT({t0, t ′0},⊥) is equal to t1 with only a [â 7→ 0] refinement.
We want small cuts, but we grow them as needed. Cuts combine by
taking the largest of comparable elements:

CtC ′ = {δ ∈ C∪C ′ : ∀δ ′ ∈ C∪C ′.δ ′ ~ δ =⇒ δ ′ v δ}

Lemma 28 (Worthwhile composition). Given total P,P ′ : Refinements(σ̂)→
Equality, if worthwhile(C,P), worthwhile(C ′,P ′) and ¬conflicting(C,P,C ′,P ′)
then worthwhile(CtC ′,P t P ′).

Lemma 29 (Conflicting composition never worthwhile). If conflicting(C,P,C ′,P ′),
then for all C ′′, ¬worthwhile(C ′′,P t P ′).

When we have a recursive call that creates a May result, we need
to know that no matter what, we can’t extend it to finagle a strong
result.

Lemma 30 (Fruitless extension). If (for all C, ¬worthwhile(C,P)), then
for all P ′,C, ¬worthwhile(C,P t P ′).

Proof. Results can only get worse via t, so whichever δ ∈ C leads to
P(δ) = May from the hypothesis, we get (P t P ′)(δ) = May.

Now we have the metatheory to handle a compositional splitting
equality function. Let’s move on to define tequalS, which will build a
worthwhile cut, if at least one exists.

6.7.4 Abstract term equality with worthwhile splitting

Without access to an oracle for a worthwhile cut, we need a way to
produce one bottom-up as we check term equality. Fortunately, we
need only change our definitions of ÊqRes and its associated oper-
ators, t and bind, and equality’s use of Fail. The definition of ab-
stract term equality with splitting in Figure 33 almost exactly mirrors
equality without splitting, except an Unequal result now stores the
current refinement in a set, as Both(⊥, {δ}), and Equal(dp) is written
Both(dp, ∅).

With splitting equalities, we must additionally remember which re-
finements lead to strong inequality. If refinements justifying strong
equality do not “conflict” with refinements justifying strong inequal-
ity, then we have a worthwhile splitting.

We have a notion of refinement overlap that helps us decide if two
cuts are conflicting:

Overlapping refinements

δ ∈ ∆ δ ′ ∈ D δ~ δ ′

∆ ./ D

118 a language for aam

t̂equalS : Ŝtate× Ŝtore→ T̂erm× T̂erm×Refinement→ ̂EqualityS

t̂equalS(ctx)(t0, t1, δ) = ̂equalityS(ĝuardS(ctx)(t0, t1)(δ, ∅))
̂equalityS(Both(⊥,∆)) = Unequal

̂equalityS(Both(dp, ∅)) = Equal

̂equalityS(Both(dp,∆)) = Split(dom(dp),∆)

̂equalityS(May(ps)) = May

ĝuardS : Ŝtate× Ŝtore→T̂erm× T̂erm→ ̂EqResMS

ĝuardS(ctx)(t0, t1)(δ, ps) = if (t0, t1)
?
∈ ps then

Both([δ 7→ ps], ∅)

else t̂equal
∗
S(ctx)(t0, t1)(δ, ps∪ {(t0, t1)})

t̂equal
∗
S : Ŝtate× Ŝtore→ T̂erm× T̂erm→ ̂EqResMS

t̂equal
∗
S(ς̂ , σ̂)(EAddr(â), EAddr(â)) = identical?S(σ̂.µ, â)

t̂equal
∗
S(ctx)(resolvable, t1) = eq-resolveS(ctx)(resolvable, λt ′0.ĝuardS(ctx)(t ′0, t1))

t̂equal
∗
S(ctx)(t0, resolvable) = eq-resolveS(ctx)(resolvable, λt ′1.ĝuardS(ctx)(t0, t ′1))

t̂equal
∗
S(ctx)(V(n, t), V(n, t ′)) = VS(ctx)(t, t ′)

t̂equal
∗
S(ctx)(Ex(E, v0), Ex(E, v1)) = E.≡̂S(ctx)(v0, v1)

t̂equal
∗
S(ctx)(t0, t1) = failS otherwise

where

identical?S(µ, â) = if µ(â)
?
6 1 then

successS
else maybeS

VS : Ŝtate× Ŝtore→T̂erm
∗
× T̂erm

∗
→ ̂EqResMS

VS(ctx)(〈〉, 〈〉) = successS
VS(ctx)(t0t, t ′0t ′) = seqS(guardS(ctx)(t0, t ′0),VS(ctx)(t, t ′))

VS(ctx)(_, _) = failS otherwise

Figure 33: Splitting term equality

6.7 term equality 119

The bind and join operations on a new equality result type are changed
under the hood. The intermediate result type combines strong equal-
ity and inequality into a single variant, since non-overlapping refine-
ments can justify different outcomes.

ÊqResS = ResS[T̂erm× T̂erm]

ResS[U] ::= Both(R,∆) | May(Us)

where R ∈ Refmap[U] Us ∈ ℘(U)
∆ ⊆fin Refinement

The result type for the entire equality only suggests a case split if do-
ing so is worthwhile. If all refinements we chased ended up proving
strong equality, then we don’t (yet) need to know why. We only split
if we have a Both result with both non-empty equality judgments,
and non-empty inequality judgments:

̂EqualityS ::= Equal | Unequal | May | Split(∆,∆)

Our equality type is again wrapped in a not-quite-monad type:

ˆemS ∈ ̂EqResMS = P̂airs→ ResMS[T̂erm× T̂erm]

but we do prepare ourselves for upcoming sections with the ResMS[U]

monad type:

ResMS[U] = Refinement→ ResS[U]

The ResS[U] type forms a join semilattice with Both(⊥, ∅) as bottom;
the join operation is defined in Figure 34. The join operation is the
symmetric closure of the rules in Figure 34. We use the ./ relation
defined above to determine if two instances of Both, as interpreted
as both a cut and a refined equality function, satisfy the conflicting
proposition of the previous subsection. A Both result is interpreted
as a cut and refined equality function by as-W:

as-W : ÊqResS → (℘(Refinement)× (Refinement→ ̂Equality))

as-W(Both(dp,∆)) =

〈
dom(dp)∪∆, λδ.

{
Equal if ∃δ ′ ∈ dom(dp).δ~ δ ′

Unequal if ∃δ ′ ∈ dom(∆).δ~ δ ′

〉

Note that the refined equality function as-W returns is total.

We have a the same few operations on ̂EqResMS as we did on
̂EqResM: seq, eq-resolve, success, fail, and maybe. The definitions are in

120 a language for aam

May(Us)tMay(Us ′) = May(Us∪Us ′)

Both(R, _)tMay(Us) = May(Us∪ squash(R))

Both(R,∆)tBoth(R ′,∆ ′) = if ∆
?
./ dom(R ′) orelse ∆ ′

?
./ dom(R) then

May(squash(R)∪ squash(R ′)),

Both(Rt R ′,∆t∆ ′)

where

R0 t R1 = [δ 7→
⋃
δ ′vδ

R0(δ
′)∪ R1(δ ′) : δ ∈ dom(R0)t dom(R1)]

Figure 34: ResS[U] join rules

Figure 35. The eq-resolve function depends on the lower level resolveS
of the ResM monad:

resolveS : Ŝtore→T̂erm× (T̂erm→ ResM[U])→ ResM[U]

resolveS(σ̂)(IAddr(â, _), f) = selectS(σ̂, â, f)

resolveS(σ̂)(Delay(â), f) = selectS(σ̂, â, f)

resolveS(σ̂)(NDT(t̂s, Es), f) = λ(δ).
⊔

t̂∈Choose(NDT(t̂s,Es))

f(t̂)(δ)

where

selectS : Ŝtore× Âddr× (T̂erm→ ResM[U])→ ResM[U]

selectS(σ̂, â)(δ) = if â
?
∈ dom(δ) then

f(δ(â))(δ)

else if σ̂.µ(â) ?
= 1 then⊔

t̂∈Choose(σ̂(â))

f(t̂)(δ[â 7→ t̂])

else
⊔

t̂∈Choose(σ̂.h(â))

f(t̂)(δ)

Refmaps are not joined pointwise since their domains are part of
a cut (the ∆ set is the other part). Cuts are joined with the max
operation of the previous section. We treat unmapped refinements in
a Refmap as mapping to ∅ here.

6.7 term equality 121

seqS : ̂EqResMS × ̂EqResMS → ̂EqResMS

seqS(ˆemS, ˆem ′S)(ps)(δ) = case ˆemS(ps)(δ) of

Both(dp,∆) : Both(⊥,∆)t
⊔

δ ′∈dom(dp)

ˆem ′S(δ
′, dp(δ ′))

May(ps) : weakenS(ˆem ′S(δ, ps))

weakenS : ResS[U]→ ResS[U]

weakenS(Both(⊥,∆)) = Both(⊥,∆)

weakenS(May(Us)) = May(Us)

weakenS(Both(R, _)) = May(squash(R)) otherwise

with the varying success operations

successS(ps)(δ) = Both([δ 7→ ps], ∅)
maybeS(ps)(δ) = May(ps)

failS(ps)(δ) = Both(⊥, {δ})

and the resolution operation

eq-resolve : Ŝtate× Ŝtore→T̂erm× (T̂erm→ ̂EqResMS)→ ̂EqResMS

eq-resolve(ς̂ , σ̂)(t̂, f)(δ, ps) = resolveS(σ̂)(t̂, f)(δ)

Figure 35: ̂EqResMS sequencing

122 a language for aam

In Figure 35 we define a bind operator for sequencing equality judg-
ments through variants and maps as a form of “this and that are
equal.” The behavior should short-circuit when unequal, jump to top
if we pass through a May without further inequalities, and combine
possibilities on equalities.

6.8 pattern matching

The semantics of patterns is defined by matching, which has a few
pieces to consider. The fixed inputs are the current state and address
cardinalities, ς̂ and µ. The variable inputs are the following:

• p ∈ Pattern: the pattern;

• t ∈ T̂erm: the term to match;

• ρ ∈ M̂Env: the metavariable binding environment mapping pat-
tern names to terms;

• δ ∈ Refinement: the currently pursued refinement.

The inexactness of terms means that a pattern can match in multi-
ple different ways. Matching must therefore return a set of metalan-
guage environments when it successfully matches. Similar to term
equality, matching builds up store refinements as it either resolves
indirect addresses to further match, or uses splitting term equality in
non-linear patterns. The match function uses the same ResS return
container as splitting abstract term equality, but stores output bind-
ing environments instead of term pairs. Additionally, the return type
M̂atchM is an actual monad:

M̂atchM = ResMS[M̂Env]

where ResMS[U] = Refinement→ ResS[U]

ρ ∈ M̂Env = Name ⇀
fin

T̂erm

de ∈ Refmap[M̂Env]

Rs ∈ ℘(M̂Env)

Similarly, the top level return type has four variants:

M̂atch ::= Success(Rs) | Fail | May(Rs) | Split(de,∆)

The monad operations in Figure 36 manage the nondeterminism.
Matching is driven structurally by well-founded patterns, except

insofar as term resolution eventually results in terms with more struc-
ture. Matching and resolution are extended with a guard set in order
to catch unproductive recursion. This detail distracts from the over-
all presentation, so it appears only in the Haskell implementation in
Chapter 2

6.8 pattern matching 123

bindS : ResMS[U]× (U→ ResMS[V])→ ResMS[V]

bindS(m̂, f)(δ) = case m̂(δ) of

Both(R,∆) : Both(⊥,∆)t
⊔

δ ′∈dom(R),u∈R(δ ′)

f(u)(δ ′)

May(Us) : weakenS(
⊔
u∈Us

f(u)(δ))

returnS(u)(δ) = Both([δ 7→ {u}], ∅)

Figure 36: Monad operations on ResMS

When we match a term with the pattern Name(x,p), the term is
demanded and bound to x in the M̂Env, and the demanded the term
is further inspected by p. If the term is an IAddr, then its lookup
modality is consulted to drive the matching semantics. Additionally
if the term is resolvable, then its nondeterminism is resolved unless
the pattern is Wild25. 25 It is sound to

resolve anyway, but
wasteful to
unnecessarily split
the binding
environments.

Let’s take a look at how the different lookup modalities drive pat-
tern matching in a small example. The example term we’ll match on
is

Variant(pair, 〈IAddr(â, lm), NDT({0, 1})〉).

Our example pattern is “bind the first subterm to x, and the second
subterm to y, insofar as y is a number.” The pattern for this is

Variant(pair, 〈Name(x, Wild), Name(y, Is-External(Number))〉).

The context we have is that â is fresh, and the store maps â to
NDT({T, F}). Let’s vary â’s lookup modality and see what we get for
a match result:

• lm = ’resolve: the match produces two possible store refine-
ments, each mapped to a metalanguage environment. The â
refinement determines the term to which x is bound, and y is
bound to either 0 or 1 (the Is-External pattern ensures the NDT
is demanded).

Must([[â 7→ T] 7→ {[x 7→ T,y 7→ 0],

[x 7→ T,y 7→ 1]},

[â 7→ F] 7→ {[x 7→ F,y 7→ 0],

[x 7→ F,y 7→ 1]}]).

• lm = ’delay: produces two environments with no refinement

Must([⊥ 7→ {[x 7→ Delay(â),y 7→ 0],

[x 7→ Delay(â),y 7→ 1]}]).

124 a language for aam

When Delay(â) is inspected, â will be at least be in {T, F} since
the store currently maps â to NDT({T, F}). Further, when in-
spected, â might have gone from fresh to used. Both of these
possibilities exist because between delay and demand time, â
can be reallocated and/or updated with additional terms.

• lm = ’deref: produces two environments with no refinement

Must([⊥ 7→ {[x 7→ NDT({T, F}),y 7→ 0],

[x 7→ NDT({T, F}),y 7→ 1]}])

so x denotes the NDTerm that is either T or F.

Weak matching is defined in Figure 37. The simplest cases depend
on identity in the metalanguage. Modalities, variant names and ex-
ternal space descriptors should be unique values, so this is not prob-
lematic.

Abstract pattern matching has four differences from concrete pat-
tern matching:

1. the monad is changed to support refinement and nondetermin-
ism;

2. non-linear patterns use abstract term equality, splitting and weak-
ening the match result as the equality result dictates;

3. our notion of demand can split the match space by store refine-
ments if the demanded term has a ’resolve lookup modality;

4. there are other terms than IAddr to resolve before continuing
matching: NDT and Delay.

The abstract notion of demand is

d̂emand : T̂erm× Ŝtore×Refinement× Pattern → ℘(PreTerm×Refinement)

d̂emand(IAddr(â, lm), σ̂, δ,p) = case lm of

’delay : {〈Delay(â), δ〉}
’deref : {〈deref (σ̂, δ, â), δ〉}
’resolve : select(σ̂, δ, â)

d̂emand(NDT(t̂s, Es), σ̂, δ, Wild) = {〈NDT(t̂s, Es), δ〉}
d̂emand(NDT(t̂s, Es), σ̂, δ,p) = {〈t̂, δ〉 : t̂ ∈ Choose(NDT(t̂s, Es))}

d̂emand(t̂, σ̂, δ,p) = {〈t̂, δ〉}

Where deref defines dereferencing an address without resolving it:

deref : Ŝtore×Refinement× Âddr→ T̂erm

deref (σ̂, δ, â) = if â
?
∈ dom(δ) then

δ(â)

else σ̂.h(â)

6.8 pattern matching 125

M̂S : Ŝtate× Ŝtore→ Pattern× T̂erm× M̂Env×Refinement× → M̂atch

M̂S(ctx)(p, t, ρ, δ) = match(M̂∗S(ctx)(p, t, ρ)(δ))

match(Both(⊥,∆)) = Fail

match(Both(de, ∅)) = Success(squash(de))

match(Both(de,∆)) = Split(de,∆)

match(May(Us)) = May(Us)

M̂∗S : Ŝtate × Ŝtore → Pattern × T̂erm × M̂Env → M̂atchM

M̂∗S(ctx)(Name(x,p), t, ρ) = λδ.

if x
?
∈ dom(ρ) then

case t̂equalS(ctx)(ρ(x), t, δ) of

Equal : M̂∗S(ctx)(p, t, ρ)(δ)

Unequal : failS(δ)

Split(∆=,∆6=) : Both(⊥,∆6=)t
⊔

δ ′∈∆=

M̂∗S(ctx)(p, t, ρ)(δ ′)

May : weakenS(M̂∗S(ctx)(p, t, ρ)(δ))

else
⊔

〈t ′,δ ′〉∈d̂emand(t,σ̂,δ,p)

M̂∗S(p, t ′, ρ[x 7→ t ′])(δ ′)

M̂∗S(ctx)(Wild, t, ρ) = returnS(ρ)

M̂∗S(ctx)(Is-Addr, EAddr(_), ρ) = returnS(ρ)

M̂∗S(ctx)(Is-External(E), Ex(E, _), ρ) = returnS(ρ)

M̂∗S(ctx)(V(n,p), V(n, t), ρ) = VM̂(ctx)(p, t, ρ)

M̂∗S(ctx)(p, resolvable, ρ) =

resolveS(ctx.σ̂)(resolvable, λt ′.M̂∗S(ctx)(p, t ′, ρ))

M̂∗S(ctx)(p, t, ρ) = failS otherwise
where

VM̂(ctx)(〈〉, 〈〉, ρ) = returnS(ρ)

VM̂(ctx)(p0p, t0t, ρ) = bindS(M̂∗S(ctx)(p0, t0, ρ),VM̂(ctx)(p, t, ρ))

VM̂(ctx)(_, _, _) = failS otherwise

Figure 37: Weak pattern matching

126 a language for aam

If p is not Wild, then we must match through the term, resolving
any nondeterminism in t since it is now in a strict position.

The version of pattern matching without worthwhile splitting (M̂)
is a minor change to this definition, which I won’t fully reconstruct.
The result type uses the non-splitting container, Res[M̂Env]. The
monad operations change so that returnS(ρ) = Must({ρ}), fail = Fail,
B uses the join operation on Res[U], and we use the non-splitting
equality function.

The correctness criteria are then the exact approximation and worth-
while splitting requirements that we proved for the abstract term
equalities.

Theorem 31 (Non-splitting match is an exact approximation). γ ′ ◦
M̂ = M ◦ γ where γ is the structural concretization of M̂’s inputs, and γ ′

is the concretization of Res[M̂Env].

We generalize worthwhile to support the different ResS[U] result
type (any May result is bad):

Worthwhile cut

Cut(C, dom(P)) P antitone ∀δ ∈ C, Us.P(δ) 6= May(Us)

worthwhile ′(C,P)

If a result is worthwhile, we can use a refined enough input that
produces a single strong result.

Theorem 32 (Matching worthwhile). M̂∗S(ς̂ , σ̂)(p, t, δ, ρ) is in

if P̃
?
= ∅ then

{M̂(ς̂ , σ̂)(p, t, ρ)(δ)}

else

{Both([δ 7→ U : P(δ) = return(δ,U)],P−1(Fail)) : P ∈ P̃}
where P = [δ 7→ M̂(ς̂ , σ̂)(p, t, ρ)(δ ′) : δ ′ ∈ Refinements(σ̂), δ v δ ′]

P̃ = {P|C : worthwhile ′(C,P)}

Now that we have equality and matching defined, we’ve covered
the semantics for the left hand side of rules. We now need to handle
the right hand side: expressions.

6.9 expression evaluation

The expression language is modified slightly from the previous chap-
ter on its concrete semantics. A store lookup expression has an addi-
tional lookup modality, which is functionally a no-op in the concrete.
The whole expression grammar is in Figure 38.

6.9 expression evaluation 127

e ∈ Expr ::= Ref(x) | Variant(n, tag, e) | Call(f, e) | Let(bu, e)

| Deref(e, lm) | Alloc(tag)

lm ∈ Lookup-Modality ::= ’resolve | ’deref | ’delay

bu ∈ BU ::= Update(e, e) | Where(p, e)

f ∈ Metafunction-Names

Figure 38: Grammar of expressions

6.9.1 Representation of evaluation results

An expression can introduce changes to the store, so its evaluation re-
sult type includes both the term it evaluates to, and any store changes.
In the concrete, we simply updated the store in-place and passed it
along. In the abstract, that strategy introduces too much unnecessary
overhead. Instead, expressions evaluate to

̂EvResultS[T] = Ŝtate→ Refinement→ ∆̂Store→ ResS[T × ∆̂Store]

where ∆̂Store = Âddr ⇀
fin

Change

ct ∈ Change = Strong(PreTerm) | Weak(AbsTerm) | Reset(AbsTerm)

Each possible result can change the store in different ways, in dif-
ferent store refinements, so an output T is wrapped as such. The
arguments to the left are for us to interpret expressions in the abstract
interpretation monad. We will see the monad operations in the next
subsection.

a store change object, Change, represents the ways we can up-
date the store. A fresh address can be strongly updated to something
entirely different. A used address can only have some updates joined
in. Finally, a fresh address can be first strongly updated and then re-
allocated and updated again; the first strong update means that we
reset the contents to a now monotonically growing NDTerm. We un-
derstand a ∆̂Store as its effect on an abstract store:

apply∆ : Ŝtore× ∆̂Store→ Ŝtore

apply∆(σ̂,⊥) = σ̂
apply∆(〈h,µ〉,∂σ̂[â 7→ Strong(t̂)]) = apply∆(〈h J [â 7→ t̂],µ[â 7→ 1]〉,∂σ̂)

apply∆(〈h,µ〉,∂σ̂[â 7→Weak(t̂)]) = apply∆(〈ht [â 7→ t̂],µ〉,∂σ̂)
apply∆(〈h,µ〉,∂σ̂[â 7→ Reset(t̂)]) = apply∆(〈h[â 7→ t̂],µ[â 7→ ω]〉,∂σ̂)

failed evaluation or “stuckness” is a possible evaluation re-
sult. We use a ResS container because expression evaluation can be
strongly or weakly progressing (conversely, stuck). A strongly pro-
gressing expression uses a Refmap to map refinements to possible

128 a language for aam

result payloads. The refinements in a Refmap cannot represent the
sequence of operations “resolve â to v, then strongly update â to v ′,”
so we only use the Refmap domain to represent resolutions and not
updates. For example, without separating strong update from store
refinement, we can can confuse the evaluation of the following:

(match (lookup t)
[F F [Update t T]])

where the metalanguage enviroment maps t to EAddr(â) where

σ̂ = 〈[â 7→ NDT({T, F},⊥)], [â 7→ 1]〉.

The match is not total, so when the match resolves â to T, the lack of
a rule means the match is stuck. If we reuse the store refinement for
strong updates, then at the end of evaluating the match there is only
the one refinement that represents both an answer and stuckness. We
lose the information that states, “if we evaluate expression e under
refinement δ, then we get result r.” Instead we only have, “at the
end of evaluating e, the possible writes to the store are X, with result
terms Y.” So, the types of store refinement and strong update may be
the same, but their interpretation is different.

Both the binding/update forms and rules have a different result
type, just like in concrete evaluation. Now instead of strong success
and strong failure, we have the extra third mode: strong stuckness.
Recall that if an expression get stuck during the evalution of a BU
form, then the form is considered stuck. A stuck rule is considered
to have “applied” and just done nothing. A failed match in a Where
form just means that the form is unapplicable, and we can move on
to try another rule.

̂Rule-resultS[T] ::= FireStuckUnapplicable(ets,∆,∆) | May(E)
ets ∈ Refmap[T × ∆̂Store] and E ∈ ℘(T × ∆̂Store)

I will abbreviate FireStuckUnapplicable as FSU
Expression evaluation and rule evaluation can be converted back

and forth. A stuck expression is a stuck rule, and a progressing ex-
pression is a firing rule. A firing rule is a progressing expression,
and a non-firing rule is a stuck expression. I leave the conversions’
definitions to the appendix.

The expression evaluation functions therefore have the following
type signatures:

Ev : Expr× M̂Env→ ̂EvResultS[T̂erm]

Ev : Expr∗ × M̂Env→ ̂EvResultS[T̂erm
∗
]

Evmf : Metafunction-Name× T̂erm
∗
→ ̂EvResultS[T̂erm]

Evbu : BU× M̂Env→ ̂Rule-resultS[MEnv]

Evbu : BU∗ × M̂Env→ ̂Rule-resultS[MEnv]

6.9 expression evaluation 129

A metafunction’s meaning allows user-defined rules and external
implementations. The output of an external metafunction in this ab-
stract semantics has a different output type than in the concrete:

r ∈ Rule = Rule(p, e,bu)

Metafunction-meaning = User(r) | ExtMF(m̂f)

m̂f : T̂erm
∗
→ ̂EvResultS[T̂erm]

Metafunctions’ treatment is discussed in the evaluation of Call ex-
pressions.

When an expression’s evaluation depends on a Let binding suc-
ceeding, but it strongly fails, the evaluation is stuck (though we still
use Fail). Stuckness can happen after some store refinements, up-
dates, address allocations, and nondeterministic matching. If eval-
uation follows two paths, one that is Must and the other that is
Fail, with overlapping refinements, the evaluation is considered weak.
Any changes to the store are rolled back between a nondeterministic
choice and stuckness. The reason why is motivated by the following
example.

example Consider we evaluate Let(Where(0, Term(NDT({0, 1},⊥))), ’body).
The match in the Let is weak due to the NDTerm, so we should be in
agreement that we only weakly evaluate to ’body. Suppose we sep-
arate the nondeterministic binding from the structural match. Con-
sider then we first bind x to the resolution of used address a, so
σ̂ = 〈[a 7→ NDT({0, 1},⊥)]〉[a 7→ ω]. The binding is

bu = Where(Name(x, Wild), IAddr(a, ’resolve)).

Each value in a gets bound to x, and the match is strong. The full
expression is then Let(bu Where(0, Ref(x)), ’body). One binding of
x will be 0, so the second match will be strong and evaluation will
strongly get to the body. However, the other binding will be 1 and the
second Where match fails and evaluation is stuck. The two evalua-
tions have the same justifications, so the strengths should weaken to
May as we expect.

6.9.2 The abstract interpretation monad

Expression evaluation requires and builds state. The whole venture
is laborious without the right abstraction. We work within a monad
that has built-in commands for interacting with the external parame-
ters and running through non-determinism. First we’ll catologue the
operations for ̂EvResultS[T] and their purpose before we define them.

• return(t̂): in the current context, we’ve evaluated to t̂ (translates
to Must([δ 7→ {〈t̂,∂σ̂〉}]));

130 a language for aam

• ev�= f: (also written bind) evaluate ev to some t, then evaluate
f(t);

• fail(): evaluation is stuck (translates to Fail({δ}));

• mkV(n, tag, t̂, ρ): the mkV external itself plugs into the monad
to create a variant named n with allocation site tagged tag out
of terms t̂ after matching has resolved to the environment ρ;

• alloc(tag, ρ): create an explicit address, weakening any store
changes to that address;

• with-lookup(â, lm, f): look up â in the appropriate lookup mode
and pass the resulting term to f in the updated context;

• choose(∆, ev): combine the evaluations of ev under the different
refinements from ∆;

• resolve(t̂): get a grounded form of t̂;

• update-res(â, t̂, ev): set σ̂.h(â) to t̂with the appropriate strength,
then run ev in the new context.

We give mkV and alloc access to not only the current state and
allocation site tag, but also to the binding environment. This choice
captures the way that the original AAM paper resolves some non-
determinism and then passes the choice to later parameters26.26 See Van Horn

and Might [95]
figure 5, where both

alloc and tick are
passed a

continuation that
was previously

selected from the
store.

Running an evalution is just applying it to the current state, refine-
ment, and store changes:

run-ev(ev, ς̂ , δ,∂σ̂) = ev(ς̂ , δ,∂σ̂)

The first is as straightforward as described:

return:

return(a) = λς̂ , δ,∂σ̂.Both([δ 7→ {〈a,∂σ̂〉}],⊥)

Bind requires multiple runs in different contexts and joining the
results:

bind:

ev�= f , λς̂ , δ,∂σ̂.case run-ev(ev, ς̂ , δ,∂σ̂) of

Both(R,∆) : Fail(∆)t
⊔

δ ′∈dom(R),〈t,∂σ̂ ′〉∈R(δ ′)

f(t, ς̂ , δ ′,∂σ̂ ′)

May(Us) : weakenS(
⊔

〈t,∂σ̂ ′〉∈Us

f(t, ς̂ , δ,∂σ̂ ′))

Failure captures the current refinement:

6.9 expression evaluation 131

fail:

fail() = λς̂ , δ,∂σ̂.Fail({δ})

The allocation external gets read-only access to the monad context.
Reallocating an address must signal the weakening of any current use
of the address already Say we allocate some address â. If we know
the ∂σ̂ maps â to a strong update, then the address is now used and
the strong update must be demoted to a Reset. Any further updates
to â will grow the NDTerm in the mapped Reset object.

Allocating an address further extends the store to map an “unini-
tialized” term – the bottom element of the term lattice: NDT(∅,⊥)
(we just write ⊥).

alloc:

alloc(tag, ρ) = λς̂ , δ,∂σ̂.return â ς̂ δ (case ∂σ̂(â) of

Strong(t̂) : ∂σ̂[â 7→ Reset(t̂)]

ct : ∂σ̂

⊥ : ∂σ̂[â 7→ if ς̂ .σ̂.µ(â) = 0 then

Strong(⊥)
else Weak(⊥)])

where â = alloc(tag, ρ) ς̂ δ ∂σ̂

Store lookup resolves as necessary. First, if an address is locally
modified, take any strong contents and run with them; weak contents
must be reconciled with the current store first. If no modifications,
then the address might be refined; run with that if it exists. If no
modifications or refinements, then look up from the store and, given
the lookup mode, refine then run.

with-lookup:

with-lookup(â, ’delay, f) = f(Delay(â))

with-lookup(â, lm, f) = λς̂ , δ,∂σ̂.case ∂σ̂(â) of

Strong(t̂) : f t̂ ς̂ δ ∂σ̂

Reset(t̂) : f t̂ ς̂ δ ∂σ̂

Weak(t̂) : f(t̂t ς̂ .σ̂.h(â)) ς̂ δ ∂σ̂

⊥ : case δ(â) of

t̂ : f t̂ ς̂ δ ∂σ̂

⊥ : case lm of

’resolve :
⊔

t̂∈Choose(ς̂ .σ̂.h(â))
f t̂ ς̂ δ[â 7→ t̂] ∂σ̂

’deref : f(ς̂ .σ̂.h(â))(ς̂)(δ)(∂σ̂)

132 a language for aam

choose:

choose(∆, ev) = λς̂ , δ,∂σ̂.
⊔
δ ′∈∆

ev ς̂ δ ′ ∂σ̂

Term resolution only gets stuck if there are no terms to resolve.
Otherwise, each term is packaged up in evaluation object. We call
resolve when a term is demanded, so we do not respect the lookup
modality for an implicit address - we simply resolve.

resolve:

resolve(NDT(∅,⊥)) = fail()

resolve(NDT(ts, es)) = λς̂ , δ,∂σ̂.Both([δ 7→ {〈t̂,∂σ̂〉 :
t̂ ∈ Choose(NDT(ts, es))}],⊥)

resolve(Delay(â)) = with-lookup(â, ’resolve, return)

resolve(IAddr(â, _)) = with-lookup(â, ’resolve, return)

resolve(t̂) = return(t̂)

Finally, we have the store update. A danger to soundness is a
strong update to an address that somewhere in the machine is lying
dormant in a Delay. The delayed lookup should refer to the current
value, and not the value post-update. There are a few ways to ap-
proach this: disallow strong updates, never delay and always deref,
or find and replace Delay(â) with the NDT(ς̂ .σ̂.h(â)) before doing
the update. I punt on handling delays with deus ex machina (which
can also be used before allocation):

undelay : Âddr→ ̂EvResultS[T]→ ̂EvResultS[T].

update-res:

update-res(â, t̂, ev) = undelay â λς̂ , δ,∂σ̂.

case ∂σ̂(â) of

Strong(_) : ev ς̂ δ ∂σ̂[â 7→ Strong(t̂)]

Weak(t̂ ′) : ev ς̂ δ ∂σ̂[â 7→Weak(t̂t t̂ ′)]
Reset(t̂ ′) : ev ς̂ δ ∂σ̂[â 7→ Reset(t̂t t̂ ′)]
⊥ : ev ς̂ δ ∂σ̂[â 7→ ct]

where ct = if ς̂ .σ̂.µ(â) ?
= 1 then Strong(t̂) else Weak(t̂)

The Weak and Reset forms both join terms, but recall that they
have different semantics when updating the store. A Reset will per-
form a strong update with the joined contents and that Weak further
joins its contents with what the store currently holds for the address.

We’ve built our hammer. Let’s find some nails.

6.9 expression evaluation 133

Ev : Expr× M̂Env→ EvResultS[T̂erm]

Ev(Ref(x), ρ) = return(ρ(x))

Ev(Alloc(tag), ρ) = alloc(tag, ρ)

Ev(Variant(n, tag, e), ρ) = do t← Ev(e)

mkV(n, tag, t, ρ)

Ev(Let(bu, e), ρ) = do ρ ′ ← B(bu, ρ)

Ev(e, ρ ′)

Ev(Deref(e, lm), ρ) = do t̂← Ev(e, ρ)

t̂ ′ ← resolve(t̂)

case t̂ ′ of

EAddr(â) : with-lookup(â, lm, return)

_ : fail()

Ev(Call(f, e), ρ) = do t← Ev(e)

Evmf (f, t)

Figure 39: Expression evaluation (scaffolding)

6.9.3 Finishing the semantics of expression evaluation

Given the monad language we’ve built up, evaluation’s definition is
strongly reminiscent of the previous chapter’s concrete semantics.

let expression evaluation bounces between evaluating bindings/up-
dates and evaluating expressions. First we see what evaluating a
single bu looks like, then their sequencing, and then their combina-
tion with expressions in Let’s evaluation rule. We expect a success-
ful match to output its extended environments at the appropriate
strength, splitting if necessary. A failing match should populate the
“unapplicable” set of refinements.

B : BU× M̂Env→ ̂Rule-resultS[M̂Env]

B(Where(p, e), ρ) = do t̂← Ev(e, ρ)

M̂S(p, t̂, ρ)

B(Update(ea, ev), ρ) = do t̂a ← Ev(ea, ρ)

t̂ ′a ← resolve(t̂a)

t̂v ← Ev(ev, ρ)

case t̂ ′a of

EAddr(â) : update-res(â, t̂v, return(ρ))

_ : fail()

We see here that B co-opts matching for Where and (via an unshown
mundate coercion) injects its results into EvResult. For Update, we
update defined for allocation so that updates to fresh addresses are

134 a language for aam

refinements, and updates to used addresses are not. The store can
only be updated with addresses, so non-addresses make evaluation
stuck.

The B function folds bind down the list.

B : BU∗ × M̂Env→ ̂Rule-resultS[M̂Env]

B(ε, ρ) = return(ρ)

B(bu : bu, ρ) = do ρ ′ ← B(bu, ρ)

B(bu, ρ ′)

metafunction call evaluation looks like the Variant case, ex-
cept at the end it calls out to the Evmf function.

Metafunctions are supposed to be total in the concrete, but abstract
inputs can lead to divergence. Consider the call

Call(rem, 〈(cons b b)〉)

where the store contains [b 7→ NDT({(nil), (cons b b)})]. This term
represents the circular data structure

(cons b b)

’() ’()

The circular structure is an abstraction of infinitely many concrete
terms that unroll the self-reference arbitrarily many times before bot-
toming out at ’(). Nondeterministic inputs can thus lead to non-
deterministic outputs; metafunctions can evaluate to multiple pos-
sible answers. Recursion on a circular structure like this does not
terminate unless one tracks the already seen inputs to stop on any
revisited input.

Metafunction evaluation tries to apply rules before evaluating the
right-hand-sides. The self-reference allowed by metafunction rules
can lead us into non-terminating evaluations. We can catch all the
non-terminating cases when the state space is finitized by tracking
whether we have seen the same combination of inputs before. I leave
this detail out of the following formalism, but the implementation is
straightforward. An implementation sketch: I chose to use dynamic
binding to create a memo-table if there wasn’t one already bound.
A typical memo table has an indefinite lifetime, but with dynamic
binding, leaving the top-level context of a metafunction call frees up
precious memory.

6.9 expression evaluation 135

Evmf (mf , t) = case M(mf) of

ExtMF(m̂f) : m̂f (t)

User(r) : oapp(r, Variant(mf , t))

External metafunction evaluation punts to the given function. User
metafunction evaluation applies rules in order until it finds a strongly
firing rule (or keeps going with weakly firing rules).

oapp : Rule∗ × T̂erm→ EvResultS[T̂erm]

oapp(ε, t̂) = fail()

oapp(r : r, t̂) = maybefire(Evrule(r, t), oapp(r, t̂))

The maybefire function runs the first rule evaluation to see if it strongly
fires, and if there are left over obligations, continues (and combines)
with the ordered evaluation.

Notice that oapp does not take an environment: metafunction calls
are all top level. A richer language would allow locally defined meta-
functions and pattern matching in expressions, where both use this
same machinery.

maybefire : ̂Rule-resultS[T]× EvResultS[T]→ EvResult[T]

maybefire(er, ev) = λς̂ , δ,∂σ̂.case er ς̂ δ ∂σ̂ of

FSU(R,∆S,∆U) : Both(R,∆S)t (choose(∆U, ev) ς̂ δ ∂σ̂)

May(E) : May(E)t (ev ς̂ δ ∂σ̂)

Finally, we need to know the definition of rule evalution, Evrule. It’s
what we expect: match, run bu, then run the right hand side. The
monad handles failure and stuckness.

Evrule : Rule× T̂erm→ ̂Rule-resultS[T̂erm]

Evrule(Rule(p, e,bu), t̂) = do ρ← M̂S(p, t,⊥)
ρ ′ ← B(bu, ρ)

Ev(e, ρ ′)

So, the overall meaning of Evmf is that if a rule strongly applies,
we evaluate its right-hand-side and return that as the result. If a
rule weakly applies, then we both evaluate the right-hand-side (but
weaken its strength) and keep trying to apply rules (also weakening).

Every interpreted metafunction call translates to a call to Evmf ,
a function in the meta-meta-language: calls and returns are prop-
erly matched by construction. The metafunction evaluation strategy
uses the metalanguage’s call stack and thus enjoys proper call/return
matching in the same way as Vardoulakis’ Big CFA2 [98] and Glück’s
context-free language parser [39].

136 a language for aam

6.10 combining it all

A (conditional) reduction rule for an abstract machine takes the form
of

Pattern 7−→ Expr[bindings/updates]

Patterns match the machine state with the previous section’s match-
ing semantics, and the resulting binding environment(s) drive the
evaluation of the right-hand-side. The rule’s bindings can further
rule out whether the rule actually fires, since binding is introduced by
may-fail pattern-matching.

The meaning of a reduction rule is induced by matching (M), bind-
ings/updates evaluation (B∗), and expression evaluation (Ev), all of
which have results that are strong or weak. We refer to a result’s qual-
ity of strong or weak as its strength. The strength of the evaluation
of the rule’s right-hand-side expression is irrelevant to the strength
of the rule firing, so the strength of whether that expression entirely
evaluates is discarded and replaced with the combined strength of
the initial match and the rule’s bindings. Binding (matching) can fail,
which is one point of strength, but before matching even happens, the
right-hand-side expression of the Where form must be evaluated. Ex-
pressions themselves can have bindings and updates, so the strength
of an expression evaluation is inherited from the strengths of its in-
ternal points of failure.

Let’s recall that the semantics is parameterized by

• S ⊂fin Rule: a collection of rewrite rules on the terms carried in
a state;

• M : Metafunction-Name ⇀
fin

Metafunction-Meaning: the metafunc-

tion environment;

• alloc : Tag× M̂Env → Ŝtate → Refinement → ∆̂Store → Âddr: for
allocating addresses given the state being stepped, the store and
binding environment at the allocation point, as indicated by a
Tag;

• mkV : Name× Tag× T̂erm
∗
× M̂Env → EvResultS[T̂erm]: for op-

tionally creating an abstracted version of a Variant that is about
to be constructed;

• τ0 : T̂ime: the initial “additional element”;

• tick : M̂Env → Ŝtate → Refinement → ∆̂Store → T̂ime: combines
the stepped state with the components of what is about to be-
come a state to produce the Time component of this state.

6.10 combining it all 137

With these components in place, we can create and step abstract
machine states:

inject : T̂erm→ Ŝtate

inject(t) = State(t,⊥,⊥, τ0)

step : Ŝtate→ ℘(Ŝtate)

step(ς̂) = finalize(ς̂ .σ̂,
⊔
r∈S

apply(r) ς̂ ⊥ ⊥)

where we define a different rule evalution function that returns the
output term as well as the next T̂ime element.

apply : Rule× T̂erm→ EvResultS[T̂erm× T̂erm]

apply(Rule(p, e, bu), t̂) = do ρ← M̂S(p, t,⊥)
ρ ′ ← B(bu, ρ)

t̂ ′ ← Ev(e, ρ ′)

return-tick(t̂ ′, ρ ′)

The return-tick monad operation uses the current state to call the tick
external and tuple it with the given term (not shown).

The output to state transformation is defined as finalize. The strength
of the reduction is forgotten, but it could be remembered as a label on
the “edge” between states, for diagnostic purposes. The store changes
and refinements are applied to the previous state’s store to ultimately
create the next set of states. We only refine addresses that have not
been modified.

finalize(σ̂, Both(R, _)) = {State(t̂, apply∆(σ̂,∂σ̂) J δ|dom(∂σ̂), τ
′) : ((t̂, τ),∂σ̂) ∈ R(δ)}

finalize(σ̂, May(E)) = {State(t, apply∆(σ̂,∂σ̂), τ) : ((t̂, τ),∂σ̂) ∈ E}

An additional step we might add is garbage collection, which we’ve
covered before, but we define the T function here.

T(Variant(n, 〈t . . .〉)) =
⋃

{T(t) . . .}

T(IAddr(a, _)∨ Delay(a)) = {a}

T(External(E, v)) = E.T(v)

T(NDT(ts, Es)) =
⋃

t∈Choose(NDT(ts,Es))

T(t)

All of this now defined, we can give a few notions of “running” a
term in a given semantics:

138 a language for aam

• Nondeterministic run: repeatedly apply step on an arbitrarily
chosen output state until stuck; report the final state as the re-
sult:

run(t) = run∗(inject(t))

run∗(ς̂) = ς̂ if step(ς̂) = ∅
run∗(ς̂) = run∗(Choice-function(step(ς̂)) otherwise

• All runs: treat the initial state as a singleton set “frontier” to
repeatedly step:

run(t) = run∗({t})

run∗(F) = case
⋃
ς̂∈F

step(ς̂) of

∅ : F
F ′ : run∗(F ′)

• Loop-detecting: run like the previous mode, but don’t re-step
already seen states:

run(t) = run∗(∅, {t})

run∗(S, F) = case
⋃
ς̂∈F

step(ς̂) of

∅ : S
F ′ : run∗(S∪ F ′, F ′ \ S)

• Reduction relation-grounding: create a concrete representation
of the reduction relation as used to evaluate the given term:

run(t) = run∗(∅, {t}, ∅)
run∗(S, F,R) = case {(ς̂ , ς̂ ′) : ς̂ ∈ F, ς̂ ′ ∈ step(ς̂)} of

∅ : R
R ′ : run∗(S∪ π1(R ′),π1(R ′) \ S,R∪ R ′)

The full generality of refinements, state splitting, and per-state
stores is not the most practical to use as a static analysis. Another
way we might run a term is in a collecting semantics, that is one that
treats one part of the state as an anchor for the other parts to mono-
tonically grow on. A collecting semantics represents the state space not
as a set of states, but as a monotonic map from some parts of a state
to the other parts of the state. For our purposes, say

State ∼= C×D for some spaces C and D where D a join-semilattice

Collecting : C
mono
⇀ D

6.11 paths to abstraction 139

The collecting semantics’ representation is more conservative than the
set of states representation. Every state that has the same C compo-
nent has its D component merged together. The merged components
are “collected” at the shared C.

In our case, C = T̂erm× T̂ime and D = Ŝtore. The T̂erm component
of C is determined by the object language’s reduction rules, but Time
and its updater, tick, are external parameters.

For the collecting semantics, we don’t finalize each state, since we
instead apply the changes to what is known at the anchor points. The
“seen set” becomes the “anchor map” for our 〈term, τ〉 pairs to map
their anchored σ̂.

If an anchor is updated in a step, then it is added to the frontier,
since the new value needs to propagate through the semantics.

run(t) = run∗([〈t, τ0〉 7→ 〈⊥,⊥〉], {〈t, τ0〉}, ∅)

run∗ : (T̂erm× T̂ime mono
⇀ Ŝtore)× ℘(T̂erm× T̂ime)× ℘((T̂erm× T̂ime)2)

run∗(S, F,R) = F ′ ?
= ∅ → 〈S,R〉, run∗(S / S ′, F ′,R∪ R ′)

where I : ℘(T̂erm× T̂ime× ℘(Ŝtate))

I =
⋃
〈t,τ〉∈F

〈t, τ, step(State(t,S(t, τ), τ))〉

S ′ = [〈t, τ〉 7→ S(t, τ)t σ̂ : (_, _,N) ∈ I, State(t, σ̂, τ) ∈ N]

R ′ = {(t, τ, t ′, τ ′) : (t, τ,N) ∈ I, State(t ′, _, τ ′) ∈ N}

F ′ = {tτ ∈ dom(S ′) : S(tτ) 6= S ′(tτ)}

The large store joins that are required at each state step (see S ′)
can be prohibitively expensive. Two different implementation strate-
gies are promising to generalize to this semantics. One is from the
TAJS project due to Jensen et al. [44] that lazily performs joins at each
demanded address, propagating backwards from the constructed an-
chor graph. The other is due to Staiger-Stöhr [89], which separates
the construction of anchor connections from store joins to use fast
graph algorithms on a novel on-the-fly SSA data structure. The use of
SSA for sparse analysis allows one to flow information directly from
change to use points, and not worry about irrelevant re-analysis.

6.11 paths to abstraction

When we have a semantics, S, written in the core language devel-
oped in this chapter, there are many paths one can take to get a static
analysis of programs in S. The primary concern we have is bound-
ing the state space. The moving parts are the semantics’ parameters:
alloc, tick, and M’s external meanings must have finite ranges, exter-
nal descriptors’ t must produce finite chains, and mkV must ensure
some bound on nesting depth. In AAM, the transformation focuses

140 a language for aam

on mkV, as alloc, and tick are already parameters (and external stuff
is trusted).

A heavy-handed abstraction for mkV is to heap-allocate all sub-
terms in all constructed variants and maps. This means a larger, more
varied store that will be referenced and updated more – it is slow. In
addition, there’s still the problem of addressing. A sound but ter-
ribly imprecise mkV would map everything to a single address. We
could synthesize the addresses as (a hash of) the tree address through
the rules to the Variant construction that calls mkV, paired with the
state’s T̂ime component. This is also not great, since it doesn’t capture
the common addressing idiom of additionally varying the addresses
by the program expression that is driving the semantics to the Variant.
At this point, we need deeper insight into the semantics itself and ask
the user for assistance in constructing mkV (by, say, producing the
code for a skeleton function to fill in). If mkV allocates everything,
that is a lot of boilerplate user assistance.

The problematic points of a variant are where the nesting can be
unbounded. A soft type analysis of the user’s semantics itself can
reconstruct the recursive structure that our mkV generator could use
to cull the requests of the user. At this point, the machinery might be
too smart without linguistic support for a conversation with the mkV
generator. By “too smart,” I mean that an analysis’s results can be
surprising, and expectations are not checked or even expressible.

The final consideration is to remove the need for mkV entirely. The
AAM transformation removes the external dependency on mkV. With
mkV removed and its functionality apparent in the rules themselves,
we have more information to optimize the analysis behind the scenes.
The fewer implicit state splits, address allocations and store lookups,
the better. This call for additional support is motivation for a proper
language (not a calculus) to enable abstraction. This language is a
topic of future work.

7
C A S E S T U D Y: T E M P O R A L H I G H E R - O R D E R
C O N T R A C T S

Software systems are large, consist of many modules, and have in-
variants that are either outright inexpressible or too costly to express
(and prove) in the language’s static type system—if it has one. When
this is the case, one might hope to rely on software contracts, a con-
cept first introduced in Eiffel by Bertrand Meyer [63], to give dynamic
guarantees about the behavior of a system. In modern higher-order
languages, the question of “who violated the contract?” becomes
non-trivial as pre- and post-conditions on behavioral values must
be delayed. Findler and Felleisen [34] gave the first semantic ac-
count of blame in a higher-order language with contracts, spawning
a large body of research on behavioral contracts. More recently, Dis-
ney, Flanagan, and McCarthy (DFM) proposed a system of temporal
higher-order contracts to provide a linguistic mechanism for describing
temporal properties of behavioral values flowing through a program.
Example temporal properties are, “a file can only be closed if it has
been opened” and, in the higher-order setting, “if function A is given
a function B, then B may not be called once A returns.” Such in-
variants are important for interfaces that have set-up and tear-down
protocols to follow, or even pure interfaces that have particular com-
positions of calls needed to construct some object.

Despite the significant engineering benefits of contracts, there are
downsides; contracts offer no static guarantees and can impose pro-
hibitive runtime overhead, particularly in the temporal case. Since
contracts are runtime monitors, they do not themselves ensure correctness—
though their blame reporting helps the process of constructing correct
programs. Verification technology provides an additional level of con-
fidence in correctness or pinpoints means for failure; its early use can
even accelerate development with its bug-reporting capabilities. A
sound model-checker can justify safely removing contract checking
and have a performance-and-correctness return on the initial invest-
ment in contract design.

Statically verifying temporal contracts poses additional challenges
over that of behavioral contracts, as they monitor the progression of
interactions with a module over time, and not just localized interac-
tions at module boundaries. This chapter uses the AAM framework
through the Limp analysis modeling tool to to check for reachabil-
ity of a temporal contract blame. I propose a semantics of tempo-
ral higher-order contracts that has an operational interpretation by
means of regular expression derivatives [14]. The formal semantics

141

142 case study : temporal higher-order contracts

differs from DFM’s published formalism, but captures the spirit of
its implementation. The interpretation via regular expression deriva-
tives allows us to add the temporal property checking as part of the
language’s semantics itself. The sound and computable abstractions
Limp offers make verification “fall out” of the language specification.
Model checking a program with respect to its temporal contracts just
amounts to running it—post abstraction—to either witness blame
(perhaps spuriously) or confirm its absence (absolutely).

I provide an intuition for how temporal contracts work (§ 7.1), and
present their syntax with examples. The semantics of DFM and a dis-
cussion of its problem points follow (§ 7.2), with my new semantics
along with a proven-correct notion of derivative for regular expres-
sions with back-references in the scope of our non-standard semantics
of negation. Next, I show the semantics of a miniature Scheme-like
language with temporal higher-order contracts (§7.3) in Limp, where
the derivative function to give an operational interpretation of “step-
ping” temporal contracts is a simple metafunction. Finally in § 7.4, I
show how the abstract semantics Limp produces is computable and is
able to verify some programs’ blame freedom.

7.1 overview of temporal higher-order contracts

Temporal contracts provide a declarative language for monitoring the
temporal ordering of actions that pass through module boundaries.
We begin with a simple example that exhibits the expressiveness of
temporal higher-order contracts to frame the discussion. The follow-
ing example comes from DFM, and its behavior led us to explore an
alternative semantics.

7.1.1 DFM’s sort example, revised

This example presents the contract for a hypothetical sort function
which takes two arguments: a comparator and a list (of positive num-
bers), is non-reentrant, and furthermore cannot make its given com-
parator available to be called after it’s done sorting. We express the
structural component of the contract (with labels given to function
components) like so:

sort : (cmp : Pos→ Pos→ Bool) (List Pos)→ (List Pos)

We can express the temporal component of the contract in a natural
way with the following:

¬(...call(sort, _, _) !ret(sort, _)∗ call(sort, _, _))

∩¬(... 〈call(sort, ?cmp, _)〉 ... ret(sort, _) ... call(cmp, _, _))

7.1 overview of temporal higher-order contracts 143

The first clause expresses non-re-entrance, phrased as a negation of a
trace reentering the function: after a call to sort and some actions that
aren’t returns from sort, there is another call to sort.

The second clause of the temporal component specifies a higher-
order property: given a call to sort, its associated cmp argument can-
not be called after sort returns. We use angle brackets around actions
that we want to bind values from, using the ? binding form. Since
cmp will be wrapped with its higher-order contract at each call, which
creates new values, the bindings for cmp will be distinct across exe-
cution. The intention of the regular-expression notation is to say, “as
long as the trace is a prefix of these strings of actions, the temporal
contract is satisfied.” For example, A satisfies the contract ABC, but
ABD doesn’t.

Since the semantics is prefix closed, we can take the state of a regu-
lar expression parser as an indicator for whether the contract system
should blame. I chose regular expression derivatives for this purpose
due to their simplicity, though we extended them to allow for back-
referencing values captured in binding forms. Consider the following
faulty trace for an interaction with sort that violates the higher-order
component of the temporal contract:

call(sort,6, ‘(2 1)) call(wrap, 2, 1) ret(sort, ‘(1 2))) call(wrap, 0, 1)

where wrap = λxy.(if (and (pos? x) (pos? y)) (6 x y) blameclient
contract)

The contract system applies the regular expression derivative for
each action in the trace as it arrives, and blames as soon as derivation
fails. Recall that a regular expression derivative is with respect to
some character c such thatw ∈ ∂cR iff cw ∈ R. In our system, we have
structured characters, actions, that carry values that we can reference
later via binding. The derivatives for this faulty trace, cumulatively
(the T for the previous equality has one less prime), are

∂call(sort,6,‘(2 1))T = ¬∪ {T0, !ret(sort, _)∗ call(sort, _, _)},

∩¬∪ {T1, (... ret(sort, _) ... call(cmp, _, _), ρ)}

∂call(6,wrap,2,1)T
′ = T ′

∂ret(sort,‘(1 2))T
′′ = ¬T0 ∩¬∪ {T1, T2}

∂call(wrap,0,1)T
′′′ = ¬T0 ∩¬∪ {T1, T2, ε} = ¬T0 ∩⊥ = ⊥

where T0 = ...call(sort, _, _) !ret(sort, _)∗ call(sort, _, _)

T1 = ... 〈call(sort, ?cmp, _)〉 ... ret(sort, _) ... call(cmp, _, _)

T2 = ... call(cmp, _, _), ρ

ρ = [cmp 7→ wrap]

The final state has a negated nullable contract, which we regard
as a failing state. This is because a regular expression derives to ε
through a string w iff w is accepted by the regular expression. We

144 case study : temporal higher-order contracts

S ∈ Structural ::= flat(e) | ` : S 7→
e
S | 〈S, S〉

e ∈ Expr ::= tmon (e, T) | smonk,l
j (S, e) | other forms

`,k, l, j ∈ Label an infinite set

η ∈ Timeline an infinite set

Figure 40: Syntax of structural contracts with labels

interpret non-empty regular expressions as contracts that are follow-
ing an allowed path, and have not yet violated it. This interpretation
implies prefix closure of our partial trace semantics in Section 7.2.

7.1.2 Syntax of contracts

The general forms for expressing structural contracts and monitoring
values are in Figure 40. The temporal arrow contract ` : S 7→

e
S has

two additional components on top of a standard arrow contract: a
timeline which e must evaluate to, and a name `. A timeline (η) is gen-
erated by evaluating the (new-timeline) expression. Each timeline
η is associated with a runtime monitor τ(η) that tracks contract ad-
herence of calls and returns of functions temporally contracted on the
timeline. A name on a temporal arrow contract is inherited from DFM:
it allows a contract to refer to any wrapping of a function instead of
a specific wrapping.

The other forms of the language are orthogonal, but we of course
assume the existence of λ expressions. The labels k, l, j in an smon2727 Short for

“structural contract
monitor.”

expression are the identities of parties engaged in a software contract.
There are three parties: the provider of a value (k, the server), the
consumer of a value (l, the client), and the provider of the contract (j,
the contract).

A structural monitor smonk,l
j (S, e) is a behavioral monitor [25]:the

structural contract is given by S, where a temporally contracted value’s
actions are sent to the runtime monitor associated with the contract’s
timeline. A temporal contract can be attached to a timeline with the
imperative tmon command. Each addition T to a timeline η sets the
timeline’s monitor to the extended ∩{T , τ(η)}.

The syntax is presented in Figure 41.
Structural contracts include subsets of first-order data that satisfy

a particular predicate (flat(e)), functions with associated structural
contracts on their domain and range in addition to a label to refer-
ence within the temporal contract (` : SD 7→

e
SR), and cons pairs

whose components are contracted (〈SA, SD〉). Temporal contracts in-
clude actions (A), negated actions (!A), action matching scoped over
a following contract (〈A〉 T), concatenation (T · T) (often written us-
ing juxtaposition), negated contracts (¬T), Kleene closure (T∗), union

7.1 overview of temporal higher-order contracts 145

T◦ ∈ Temporal◦ ::= A | !A | ε | ¬T◦ | T◦ · T◦ | T◦∗

| ∪T̃◦ | ∩T̃◦ | 〈A〉 T◦

T ∈ Temporal = same rules as Temporal◦ for T plus | T◦, ρ

ρ ∈ Env = Var→ ℘(Value)

A ∈ Action ::= ac(n, pat) | Any

ac ∈ FAction ::= call | ret

π ∈ Trace = Action∗

pat ∈ TPattern ::= v | ?x | n | (cons pat pat) | !pat | Any | None

x ∈ Var an infinite set

n ∈ Name ::= x | `

Figure 41: Syntax of temporal contracts

(∪T̃), intersection (∩T̃), the empty temporal contract (ε), and an open
temporal contract closed by an environment (T◦, ρ). We consider the
fail contract ⊥ as a macro for ∪{}, and DFM’s universal contract ... a
macro for ∩{}. The difference between !A and ¬T is that the first must
be an action and force time to step forward once, whereas the second
may match arbitrarily many actions.

Actions themselves are expressed as patterns denoting calls (call(n, pat))
or returns (ret(n, pat)), with respect to a particular function named
n and with its argument or result matching a pattern pat. If n is a la-
bel (`), we simply check that the monitor wrapping the function has
the same label. Arrow contract monitors impose their label on the
contracted function. However, if n is a variable (x), then we consult
a binding environment that the monitoring system builds as we pass
binding actions to determine if the function is exactly equal to the
value bound. Patterns can match values (v), variable bindings and ref-
erences (?x, x), labeled functions (`), structured data ((cons pat pat)),
negated patterns that do not bind (!pat), anything or nothing (Any,
None).

7.1.3 File example

FileSystemContract = open : String → FileContract

FileContract = Record

read : Unit → String

write : String→ Unit

close : Unit → Unit

where ... ret(close, _)

146 case study : temporal higher-order contracts

This example gives the contract for a hypothetical file system, which
can be used to open files by giving the open function a filename (a
String); the client is then given a file handle contracted by FileContract.
A file handle, in turn, is a record of functions which interact with the
file: read, write, and close, all which perform the expected behaviors.
The temporal contract is what is interesting: it is not phrased in terms
of a negation, but rather an affirmation. Its goal is to state that a user
of the file is forbidden from making use of the file handle (through
the use of its component functions) after the user has closed the file. It
is phrased such that there is no “...” at the end of its trace; this means
that the last reference one can make to such a monitored record is
returning from close; after that, it cannot be used. Note that this is
not a liveness property; this does not mean that a return from close
must happen, as traces are prefix-closed.28 Instead, the property is a28 A set of strings S

is called
“prefix-closed” if
s ∈ S and s ′ v s

implies s ′ ∈ S where
v is “is a prefix of”

ordering.

safety property, though expressed in the affirmative.

7.2 semantics

I present and analyze a slightly different formulation than DFM’s
temporal contracts that allows for more precise specification of how
functions and values in general are used. But first, we must discuss
why we do not import DFM’s semantics directly.

7.2.1 DFM’s semantics

DFM give a denotational semantics to their temporal contracts looks
almost identical to a textbook definition of the denotation of regular
expressions, with the key difference being the inclusion of binding
forms. The details of the full definition are unimportant, and look
similar to our denotation of full traces (F[[_]], next subsection), but
with two crucial differences. The first is their denotation of negation:

[[¬T◦]]E = Trace \ [[T◦]]E

They use a module semantics based on an EF machine that tracks
the bindings shared across module boundaries, E, and a stack of mod-
ule boundaries to return to, F. Regardless of how this machine works,
the denotation of a temporal contract attached to a structural contract,
[[S where T◦]], is generated by traces of EF that are driven by sent or
received calls and return actions (roughly): ret(start,h)π ∈ prefixes([[T◦]]E) :

〈E0, start〉 ⇒π 〈E, F〉∧ E0 = ε,h : S


The use of prefixes in this definition is problematic, and negation is

the culprit. Contracts that state anything about how a trace may not
end would allow just such traces since extensions to such “bad traces”

7.2 semantics 147

are acceptable, and prefix closure will throw the “bad traces” back
into what is acceptable. For example, the denotation of temporal con-
tracts from DFM allows AA ∈ prefixes([[¬A]]), and because of prefix
closure, A ∈ prefixes([[¬A]]).

The second difference is in the semantics for referring to functions;
we give a different account that captures the spirit of their prose de-
scribing their system, and more closely reflects their implementation.
The temporal component of the example discussed in Section 7.1.1
was originally the following:

¬(... call(sort, _, _) !ret(sort, _)∗ call(sort, _, _))

∩¬(... ret(sort, _, _)... call(cmp, _, _))

In contrast to our restatement, the flat use of labels instead of bind-
ings would cause a second call to a supposedly-correct sort to fail,
since it internally calls the comparator of the same label, but of a dif-
ferent monitor construction. Their implementation works around this
by additionally adding a monitor-wrapping action, that generates a
new label to pair with the function label to uniquely identify it. Our
semantics is functionally the same, since we use pointer equality on
wrapped values. Wrapping a value constructs a new container, so
the fresh monitor label plays the same role as the monitor’s pointer
identity.

7.2.2 My semantics

I change three aspects of DFM’s semantics:

1. temporal contracts’ denotational semantics is split into both full
trace and partial trace interpretations, with a non-standard inter-
pretation of negation;

2. matching includes uncertainty, to allow for sound approxima-
tions (inherited from Limp);

3. we use temporal monitors as modules to interpret module interac-
tions.

Our semantics (Figure 42) alternates between full traces (F[[_]]) and
partial traces (P[[_]]) to combat the problems introduced by DFM’s
original use of prefixes on top of a semantics of full traces. Our in-
terpretation of negation disallows any future observation to redeem
a trace: a negated temporal contract will reject all non-empty full
traces of the given contract, as well as any extension of such traces1.
By Theorem 33, no rejected trace can be extended to an accepted
one. I claim that this semantics is what DFM intended their system
to mean, as it matches up with the expectations of their prose, the

1 This semantics of negation does not satisfy double-negation elimination (DNE).

148 case study : temporal higher-order contracts

B[[·]]• : (Temporal◦ × Env)∪ Temporal→ Trace

B[[∪T̃◦]]ρ =
⋃
B[[T◦]]ρ . . .

B[[∩T̃◦]]ρ =
⋂
B[[T◦]]ρ . . .

B[[ε]]ρ = {ε}

B[[¬T◦]]ρ = ¬F[[T◦]]ρ

P[[·]]• : (Temporal◦ × Env)∪ Temporal→ Trace

P[[T◦∗]]ρ = F[[T◦∗]]ρ · P[[T◦]]ρ
P[[T◦0 · T◦1]]ρ = P[[T◦0]]ρ ∪ F[[T◦0]]ρ · P[[T◦1]]ρ
P[[〈A〉 T◦]]ρ = {ε}∪ {dπ : d, ρ ′ ∈ LAMρ,

π ∈ P[[T◦]]ρ ′}
P[[A]]ρ = {ε}∪ F[[A]]ρ
F[[·]]• : (Temporal◦ × Env)∪ Temporal→ Trace

F[[T◦0 · T◦1]]ρ = F[[T◦0]]ρ · F[[T◦1]]ρ
F[[T◦∗]]ρ = F[[T◦]]∗ρ

F[[〈A〉 T◦]]ρ = {dπ : d, ρ ′ ∈ LAMρ,π ∈ F[[T◦]]ρ ′}
F[[A]]ρ = {d : d, ρ ′ ∈ LAMρ}

LAMρ = {d, ρ ′ : ρ ′ = m(A,d, ρ)}

¬Π = {ε}∪ {π : ∀π ′ ∈ Π \ {ε}.π ′ � π}

Figure 42: Denotational Semantics of Temporal Contracts (B means both P
and F)

test cases in their implementation, and additionally raises blame on
programs that DFM were surprised their implementation accepted —
in particular, a program that produces the faulty trace discussed in
Section 7.1.1.

Theorem 33 (Prefix closure). prefixes(P[[T◦]]ρ) = P[[T◦]]ρ

This theorem is provable with structural induction on T◦ and the
following lemma:

Lemma 34 (Full in prefix). F[[T◦]]ρ ⊆ P[[T◦]]ρ

The semantics and derivatives here are simplified to the concrete
case since Limp automatically abstracts for us.

Matching allows binding arbitrary values from the language for
later comparison, so the space of temporal contract derivatives is un-
bounded. After abstraction the value space becomes finite, but com-
parison for (concrete) equality is not decidable, so we fall back on
Limp’s built-in support for managing equality judgments.

Matching against sets of values makes it possible that we have sev-
eral possible matches. Thus m returns a set of environment, possible

7.2 semantics 149

∂··• : Action× Temporal◦ × Env→ Temporal

∂
ρ
dε = ⊥

∂
ρ
dA =

 ε if ρ = m(A,d, ρ)

⊥ if #f = m(A,d, ρ)

∂
ρ
d〈A〉 T

◦ =

 T◦, ρ ′ if ρ ′ = m(A,d, ρ)

⊥ if #f = m(A,d, ρ)

∂
ρ
dT
◦
0 · T◦1 = ∪{∂ρdT

◦
0 · (T◦1 , ρ), ν(T◦0) · ∂

ρ
dT
◦
1 }

∂
ρ
d∪T̃◦ = ∪∂

ρ
dT
◦ . . .

∂
ρ
d∩T̃◦ = ∩∂

ρ
dT
◦ . . .

∂
ρ
dT
◦∗ = ∂ρdT

◦ · (T◦∗, ρ)

∂
ρ
d¬T

◦ = if ν(∂ρdT
◦)

?
= ε then ⊥ else ¬∂

ρ
dT
◦

Figure 43: Derivatives of Temporal Contracts

ν(ε) = ν(T◦∗) = ν(¬T◦) = ε

ν(〈A〉 T◦) = ν(A) = ⊥

ν(∪T̃◦) =
∨
ν(T◦) . . .

ν(∩T̃◦) =
∧
ν(T◦) . . .

ν(T◦0 · T◦1) = ν(T◦0)∧ ν(T◦1)
ν(T◦, ρ) = ν(T◦)

Figure 44: Nullability of Temporal Contracts

150 case study : temporal higher-order contracts

m : Pattern×Data× Env→ ℘(MR)

p ∈ Pattern ::= TPattern rules plus | c(p)

mr ∈MR ::= ρ | #f

S ⊂MR

Let ρ⊥ = #f

d ∈ Data = d̃ | v | c(d)

c ∈ Constructors = {call, ret, cons}

S ./ S ′ = {mr / mr ′ : mr ∈ S, mr ′ ∈ S ′}
ρ / ρ ′ = (λx.(if x ∈ dom(ρ ′)

ρ ′(x)

ρ(x)))

Figure 45: Spaces and functions for
matching

m(Any, _, ρ) = ρ

m(None, _, ρ) = #f

m(`, λ`x. e, ρ) = ρ

m(!pat,d, ρ) = case m(pat,d, ρ)

| #f⇒ ρ

| ρ ′ ⇒ #f

m(?x,d, ρ) = ρ[x 7→ d]

m(x,d, ρ) = m(ρ(x),d, ρ)

m(c(p), c(d), ρ) = (1S . . .)

where S . . . = m(pat,d, ρ) . . .

m(p, d̃, ρ) =
⋃

m(p,d, ρ) . . .

m(d,d ′, ρ) = ρd'd ′

m(p,d, ρ) = #f otherwise

Figure 46: Semantics of matching

7.2 semantics 151

from matching a given pattern against some data, and if failure is
possible (#f). The interesting case is for constructed data, where we
must combine results for each tree element. We simply left-associate
./ over results to get a cross-product of the different match combina-
tions. The / operator extends the left environment with the bindings
of the right, though the order doesn’t matter considering that binding
patterns may not bind the same variable twice.

The denotational semantics is not executable, so the correctness of
derivatives with respect to the denotational semantics is crucial to the
correctness of our monitoring system. We must show the correctness
of both the full and partial interpretations of both open and closed
temporal contracts, though all have similar proofs. We say e satisfies a
temporal contract T its trace of actions sent to the temporal monitor is
in the denotation of the temporal contract (P[[T]]). The proof that our
monitoring system ensures an expression either satisfies its contract
or blames is mostly technical. This is because monitors are generated
during reduction, but the proof hinges mainly on the correctness of
derivatives:

Theorem 35 (Derivatives correct). The following are mutually true

1. F[[∂ρdT
◦]] = {π : dπ ∈ F[[T◦]]ρ}

2. P[[∂ρdT
◦]] = {π : dπ ∈ P[[T◦]]ρ}

3. F[[∂dT]] = {π : dπ ∈ F[[T]]}

4. P[[∂dT]] = {π : dπ ∈ P[[T]]}

The key lemma is the correctness of our nullability function, which
follows from a simple induction.

Lemma 36 (Nullability). ν(T◦) = ε ⇐⇒ ε ∈ F[[T◦]]ρ

Thus assuming Lemma 36, each case of Theorem 35 has a straight-
forward proof except in the ¬ case, shown below (for the first propo-
sition):

Case T◦ ≡ ¬T◦ ′.

Case H : ν(∂ρdT
◦ ′) = ε.

(1) F[[∂ρdT
◦]] = ∅ by computation

(2) ε ∈ F[[∂ρdT
◦ ′]] by H, lemma 36

(3) d ∈ F[[T◦ ′]]ρ by IH, (2)

To show {π : dπ ∈ F[[T◦]]ρ} = ∅, we suppose π ∈ ¬F[[T◦ ′]]ρ and show
π 6≡ dπ ′:

Case π ≡ dπ ′.

Since d ∈ F[[T◦ ′]]ρ, by definition of ¬, contradiction.

Otherwise.

π not prefixed by d

Case H : ν(∂ρdT
◦ ′) = ⊥.

(1) ε /∈ F[[∂ρdT
◦ ′]] by lemma 36

152 case study : temporal higher-order contracts

(2) {π : dπ ∈ F[[T◦ ′]]ρ} = F[[∂ρdT
◦ ′]]

by IH
(3) d /∈ F[[T◦ ′]]ρ by (1), (2)
(4) Goal is ¬{π : dπ ∈ F[[T◦ ′]]ρ} = {π : Aπ ∈ ¬F[[T◦ ′]]ρ}

by computation

We prove this goal by bi-containment:

Case Hs : π ∈ ¬{π : dπ ∈ F[[T◦ ′]]ρ}.

(1) ∀π ′ ∈ {π : Aπ ∈ F[[T◦ ′]]ρ} \ {ε}.π ′ � π
by Hs and inversion

(2) Suppose π ′ ∈ F[[T◦ ′]]ρ
(3) π ′ �Aπ by (1), (2), prefix cancellation
(4) π ∈ ¬F[[T◦ ′]]ρ by (3)

Case Hs : π ∈ ¬F[[T◦ ′]]ρ.

(1) ∀π ′ ∈ F[[T◦ ′]]ρ \ {ε}.π ′ �Aπ
by Hs, inversion

(2) Suppose π ′ ∈ {π : Aπ ∈ F[[T◦ ′]]ρ} \ {ε}
(3) Aπ ′ ∈ F[[T◦ ′]]ρ by (2)
(4) π ′ � π by (1), (3), prefix cancellation
(5) π ∈ ¬{π : dπ ∈ F[[T◦ ′]]ρ}

by (4)

Paths relate to repeated derivation:

Corollary 37. π ∈ P[[T]] ⇐⇒ ν(∂πT) = ε

An additional surprising property of this semantics is that triple
negation is single negation, but double negation is a separate beast.
The first note is that double negation has the property in 38. For
convenience, let’s define the following helper.

done? : Temporal→ B

done?(T) = ν(T) ?
= ε

Theorem 38 (DN kills future). ∂d¬¬T = done?(∂dT)→ ...,⊥

Proof.

∂d¬¬T = done?(∂d¬T)→ ⊥,¬∂d¬T

= done?(done?(∂dT)→ ⊥,¬∂dT)→ ⊥,¬∂d¬T

= done?(∂dT)→ [if lift]

(done?(⊥)→ ⊥,¬∂d¬T),

(done?(¬∂dT)→ ⊥,¬∂d¬T)

= done?(∂dT)→ ¬∂d¬T ,⊥ [def. ν]

= done?(∂dT)→ ¬done?(∂dT)→ ⊥,¬∂dT ,⊥
= done?(∂dT)→ ¬⊥,⊥ [case hyp.]

= done?(∂dT)→ ...,⊥

7.2 semantics 153

In other words, since negation restricts any lookahead ability to
one event, a double negation limits the applicability of a temporal
contract to only its first allowed event.

Triple negation has the flip quality of double negation: if the deriva-
tive is nullable, then fail, otherwise all is permissible.

Lemma 39. ∂d¬¬¬T = done?(∂dT)→ ⊥, ...

Proof.

∂d¬¬¬T = done?(∂d¬¬T)→ ⊥,¬∂d¬¬T

= done?(done?(∂dT)→ ...,⊥)→ ⊥,¬∂d¬¬T [Theorem 38]

= done?(∂dT)→ [if lift]

(done?(...)→ ⊥,¬∂d¬¬T),

(done?(⊥)→ ⊥,¬∂d¬¬T)

= done?(∂dT)→ ⊥,¬∂d¬¬T [def. done?]

= done?(∂dT)→ ⊥,¬(done?(∂dT)→ ...,⊥) [Theorem 38]

= done?(∂dT)→ ⊥,¬⊥ [case hyp.]

= done?(∂dT)→ ⊥, ...

Finally, four negations squashes back to two.

Theorem 40 (QNE). ∂d¬¬¬¬T = ∂d¬¬T

Proof.

∂d¬¬¬¬T = done?(∂d¬¬¬T)→ ⊥,¬∂d¬¬¬T

= done?(done?(∂dT)→ ⊥, ...)→ ⊥,¬∂d¬¬¬T [Lemma 39]

= done?(∂dT)→ [if lift]

(done?(⊥)→ ⊥,¬∂d¬¬¬T),

(done?(...)→ ⊥,¬∂d¬¬¬T)

= done?(∂dT)→ ¬∂d¬¬¬T ,⊥ [def. done?]

= done?(∂dT)→ ¬(done?(∂dT)→ ⊥, ...),⊥ [Lemma 39]

= done?(∂dT)→ ¬⊥,⊥ [case hyp.]

= done?(∂dT)→ ...,⊥
= ∂d¬¬T

Actions should only be visible to a temporal contract monitor if the
action affects that monitor. This is not an issue in DFM’s semantics,
since they consider only one module at a time. For each tmon redex,
our semantics creates a fresh runtime monitor for the contract; we
store the state of these monitors in a global environment τ, where

154 case study : temporal higher-order contracts

the freshness comes from a space of timelines. I call these different
keys “timelines” since time is relative to each module. We use time-
lines to distinguish where different function contracts will send their
actions to be checked. Thus, as functions cross module boundaries,
they also shift timelines: the more boundaries a function crosses, the
more timelines will be aware of the calls made to it (due to nested
wrappings). The specifics of timelines are discussed in Section 7.3.

7.3 the semantics in limp

Temporal monitors capture values to compare for object identity. The
monitors can thus create space leaks if not implemented carefully.
Concrete space leaks imply to abstract precision leaks. This section
not only shows how we model the semantics of temporal contracts in
Limp, but also shows how to use weak references to stop monitoring
“dead” values.

We employ abstract garbage collection to precisely analyze pro-
grams utilizing temporal contracts. Weak references are necessary
for blame freedom predictions when a monitor is waiting to blame
when a given would-be dead function is called, for example. Recall
to the sort example’s “don’t call cmp after return” contract, and con-
sider a program that calls the sort function more than once with the
same comparator. The abstract semantics can use stale addresses for
temporally contracting functions, so object identity checks between
temporally contracted cmp functions become useless May results. A
newly contracted cmp can be safely called during sorting in the con-
crete, but in the abstract the “new” cmp is indistinguishable from the
“old” cmp. The “old” cmp shouldn’t be called, so a call to the “new”
cmp leads to both a blame and the comparison. Without collecting
would-be dead functions in monitors, the analysis emits a spurious
blame.

scheme syntax in limp The Scheme-like language’s core expres-
sions in the Limp language syntax are

[(e) Expr (app Expr Exprs)
x
(lam xs Expr)
(smon ` ` ` Ssyn e)
(tmon e Tsyn)
(begine Expr Exprs)
(letrece LClauses Expr)
(ife Expr Expr Expr)
TCon-syntax
(primop Primops)
Datum
#:bounded]

7.3 the semantics in limp 155

[(Tsyn) TCon-syntax (bind Expr) (tpred Expr) (¬ Tsyn) (kl Tsyn)
(· Tsyn Tsyn)
(∪ Tsyn Tsyn) (∩ Tsyn Tsyn)
(⊥) (>) (ε)]

[(Ssyn) SCon-syntax (flat Expr) (--> Ssyns Ssyn ` Expr) (any/c)
(cons/c Ssyn Ssyn)]

As an implementation shortcut, the matching semantics of tempo-
ral contracts in the previous sections are deferred to user-level func-
tions manipulating event values. This gives the semantics extra power
that goes unchecked, like the ability to create unboundedly many
temporal contracts. We limit all examples to a restricted coding style
that is non-recursive and only uses predicates, ifs, projections and
equality checking. Thus, instead of a binding temporal contract form,
bind instead expects an expression that evaluates to a function that
takes an event value and produces “the rest” of the temporal con-
tract. Similarly, the tpred form expects an expression that evaluates
to a function that takes an event value and produces a truth value
indicating success or failure to match.

The list forms in the syntax use trusted lists (will not be store-
allocated)

[TList (#:Λ X (#:U (Nil) (TCons X (#:inst TList X))))
#:trust-construction]

[(es) Exprs (#:inst TList Expr)]
[(xs) Names (#:inst TList Name)]
[(Ssyns) SCon-syntaxes (#:inst TList Ssyn)]

Names, labels, primitive operators’ names and data are all external
spaces.

[(x) #:external Name #:syntax identifier?]
[(`) #:external Label #:syntax recognize-label]
[#:external Primop #:syntax
(λ (s)

(memv (syntax-e s)
’(cons car cdr pair? null?
not box? make-box unbox
call? call-label call-fn call-args
ret? ret-fn ret-label ret-value
boolean? real? equal? set-box!
add1 sub1 = <= zero? + *
new-timeline)))]

Labels must use the syntax of quoted symbols:

(define (recognize-label stx)
(syntax-case stx (quote)
[(quote x) (identifier? #’x) #t]
[_ #f]))

156 case study : temporal higher-order contracts

(letrece
(LC fact

(lam (TCons n (Nil))
(ife (app zero? (TCons n (Nil)))

1
(app *
(TCons n
(TCons (app fact
(TCons (app sub1 (TCons n (Nil)))

(Nil)))
(Nil))))))

(NLC))
fact)

Figure 47: Factorial in our Schemey AST

The Datum external space is more involved, since it evaluates the
syntax to get the quoted form.

[#:external Datum
#:syntax
(λ (s)

(with-handlers ([values (λ _ #f)])
(define ev
(parameterize

([sandbox-eval-limits (list 1 1)])
(make-evaluator ’racket/base)))
(define x
(call-in-sandbox-context
ev
(λ () (eval-syntax s))))

(or (symbol? x)
(boolean? x)
(number? x)
(string? x)
(null? x)
(void? x))))]

By attaching syntax recognizers to external spaces, we can write
terms that will get tagged with the appropriate external space’s name.
Figure 47 shows how we write factorial in this little language:

machine representation in limp The abstract machine we
use has thirteen (13) kinds of states.

[State (ans v) (ev e ρ eκ) (coe eκ v)
(ap fnv vs eκ)
(blame ` S v) (tblame ` T event)
(ev-syn Ssyn ρ sκ)

7.3 the semantics in limp 157

(check ` ` S v cκ)
(check-app (#:inst TList S) vs Blessed vs eκ)
(send T event ` η tκ)
(cod tκ T) (cos sκ S) (coc cκ v)]

The answer (ans), expression eval (ev), continue expression eval (here
coe but usually co) and apply (ap) states should be familiar. The
other states are for assigning structural contract blame (blame), as-
signing temporal contract blame (tblame), constructing a structural
contract (ev-syn), checking a value against a structural contract (check),
checking an arrow contract against a call (check-app), sending an
event to a temporal monitor (send), continuing a temporal deriva-
tive computation (cod), continuing a structural contract construction
(cos), and continuing a structural contract check (coc).

The four continue states correspond to the four classifications of
continuations. The continuations in the machine can be visualized as
striped in four (4) different colors.

1. An expression continuation (EKont) expects a value;

2. a structural contract checking continuation (CKont) expects a
value;

3. a temporal contract derivative contract (TKont) expects a tem-
poral contract value; and

4. a structural contract constructing continuation (SKont) expects
a blessed structural contract.

All but the expression continuation are constructed in an expres-
sion context (an EKont in the tail), or in their own context.

[(eκ) EKont (Halt) (ECons eϕ eκ) (PCons pϕ tκ)
(VCons vϕ cκ) (ACons aϕ sκ)]

[(cκ) CKont (CCons cϕ cκ) (HCons hϕ eκ)]
[(tκ) TKont (τCons dϕ tκ) (LCons lϕ eκ)]
[(sκ) SKont (SCons sϕ sκ) (BCons bϕ eκ)]

All the different modes of execution need expression evaluation at
some point, so expression continuations have different constructors
to carry the different modes’ continuation types.

A value is a constructed temporal contract, a timeline, a primitive
(datum or operation), an event, a function, a blessed function, a cons,
or a letrec cell.

[(fnv) Proc-Value (primop Primop) (Clo xs Expr Env) Blessed]
[Blessed (Clo/blessed ` ` (#:inst TList SCon) S ` η fnv)]
[(v) Value

fnv T η

event
(LR-cell (#:addr #:expose #:identity))
Primop Datum (cons Value Value)]

158 case study : temporal higher-order contracts

The interesting rules are for checking contracts and sending events
to the temporal monitor. When we apply a function that has been
blessed with a temporal arrow contract, we first check the arguments:

[#:--> #:name wrap-app
(ap (#:name fn (Clo/blessed _ _ Svs- _ _ _ _)) vs κ)
(check-app Svs- vs fn (Nil) κ)]

The check-app form components are the argument contracts, argu-
ment values to check, the function called, the (reverse) of all checked/b-
lessed values, and the continuation. If there are contracts and values
still to check, switch over to the check state and remember the rest of
the contracts and arguments to check.

[#:--> (check-app (TCons Sv- Svs-) (TCons v0 vs-to-check)
(#:name fn (Clo/blessed `- `+ _ _ _ _ _)) vs-checked κ)
(check `- `+ Sv- v0

(HCons (ch*k Svs- fn vs-to-check vs-checked) κ))]

If there are no more contracts and values to check, send the call event
with the blessed arguments to the temporal monitor. After the con-
tract on the timeline derives against the call event, we will call fn with
the appropriate arguments. If the derivation invalidates the contract,
we remember the event that causes temporal blame.

[#:--> (check-app (Nil)
(Nil)
(#:name fn (Clo/blessed `- `+ _ sv+ ` η clv))
vs-checked κ)

(send (#:cast TCon (#:lookup a)) ev `- η

(LCons (blcall fn args-checked ev) κ))
[#:where (timeline a) η]
[#:where args-checked
(#:call reverse #:inst [Value] vs-checked)]
[#:where ev (call fn args-checked)]]

The send state does some of the temporal contract derivation, and
cod continues it.

[#:--> (send T ev ` η κ)
(#:match T
[(ε) (cod κ (⊥))]
[(⊥) (cod κ (⊥))]
[(>) (cod κ (>))]
[(bindv v) (ap v (TCons ev (Nil)) (PCons (mk-tcon) κ))]
[(klv T*) (send T* ev ` η (τCons (seqk T) κ))]
[(¬v T*) (send T* ev ` η (τCons (negt) κ))]
[(·v T_0 T_1)
(send T_0 ev ` η (τCons ϕ κ))
[#:where ϕ (#:if (#:call ν?v T_0)

7.3 the semantics in limp 159

(seq2k T_1 ev η `)
(seqk T_1))]]

[(∪v T_0 T_1)
(send T_0 ev ` η (τCons (∪_0 T_1 ev η `) κ))]

[(∩v T_0 T_1)
(send T_0 ev ` η (τCons (∩_0 T_1 ev η `) κ))]

[(tpredv v)
(ap v (TCons ev (Nil)) (PCons (pred-to-T) κ))])]

The sequencing rule chooses up front if it will need to do the sec-
ond derivative, since we only need to derive the right contract if the
left contract is nullable:

∂
ρ
dT
◦
0 · T◦1 = ∪{∂ρdT

◦
0 · (T◦1 , ρ), ν(T◦0) · ∂

ρ
dT
◦
1 }

The (mk-tcon) and (pred-to-T) frames direct the expression eval-
uation back to temporal contract derivation:

[#:--> (coe (PCons ϕ κ) v)
(#:match ϕ

[(mk-tcon)
(cod κ (#:cast TCon v))]
[(pred-to-T)
(cod κ (#:if v (ε) (⊥)))])]

The result of the bindv function on the event is the derivative of the
bindv against the event. A predicate contract denotes to a single
event string, so if the predicate succeeds, then the derivative is the
empty string. If the predicate fails, the contract derives to failure.

Continuing a derivation is fairly straightforward.

[#:--> (cod (τCons ϕ κ) v)
(#:match ϕ

[(negt) (cod κ (#:if (#:call ν?v v*)
(⊥)
(#:call mk¬v v*)))]

[(seqk T_1) (cod κ (#:call mk·v v* T_1))]
[(seq2k T_1 ev η `-)
(send T_1 ev `- η (τCons (∪_1 (#:call mk·v v* T_1)) κ))]

[(∪_0 T ev η `-) (send T ev `- η (τCons (∪_1 v*) κ))]
[(∩_0 T ev η `-) (send T ev `- η (τCons (∩_1 v*) κ))]
[(∪_1 T) (cod κ (#:call mk∪v T v*))]
[(∩_1 T) (cod κ (#:call mk∩v T v*))])

[#:where v* (#:cast TCon v)]]

The endpoints of derivation are to kick off a blessed function call
(waiting to check the output contract) or finally return from a blessed
function call with its result.

160 case study : temporal higher-order contracts

[#:-->
(cod (LCons ϕ κ) v)
(#:match ϕ

[(blcall (#:name fn (Clo/blessed `- `+ _ Sv+
` (timeline a) clv))

vs ev)
(#:if (#:call µ?v v)

(tblame `- (#:cast TCon (#:lookup a)) ev)
(#:let ([#:update a v])
(ap clv vs (ECons (chret fn) κ))))]

[(blret (#:name ev (ret (Clo/blessed _ `+ _ _ _

(timeline a) _)
rv)))

(#:if (#:call µ?v v)
(tblame `+ (#:cast TCon (#:lookup a)) ev)
(#:let ([#:update a v])
(coe κ rv)))])]

Whenever the contract is in obvious failure, the semantics blames. Ob-
vious failure means algebraically ⊥ (see Figure 48), which is sufficient
for denotationally ⊥. Being algebraically ⊥ is not sufficient for deno-
tationally ⊥. It is undecidable to determine if a contract is denotation-
ally ⊥ because (predv v) is denotationally ⊥ only if v is contextually
equivalent to (λ (ev) ff). The temporal contract constructors apply
algebraic simplifactions to make these decisions faster and represent
fewer distinct yet equivalent contracts in the state space.

Checking structural contracts is simple: an arrow contract of n ar-
guments checked against a function of n arguments creates a monitor
around the function that carries the contracts to check on call/return,
and the parties involved. The wrapped function is called after all
arguments are checked and the call event is accepted by the tempo-
ral monitor. Conses check contracts structurally, reconstructing the
conses of checked/blessed values. Flat contracts return the original
value if the predicate does not evaluate to ff.

[#:--> (check `+ `- S v κ)
(#:match S
[(-->/blessed Svs- Sv+ ` η)
(#:match v
[(#:name v* (Clo args _ _))
(coc κ (Clo/blessed `- `+ Svs- Sv+ ` η v*))
[#:when (#:call eq-len args Svs-)]]

[(#:name v* (Clo/blessed _ _ args _ _ _ _))
(coc κ (Clo/blessed `- `+ Svs- Sv+ ` η v*))
[#:when (#:call eq-len args Svs-)]])]

[(cons/c A D)
(#:match v
[(cons Av Dv)

7.3 the semantics in limp 161

(µ?v : (TCon → #:boolean)
[(µ?v (⊥)) (#:external boolean #t)]
[(µ?v (∪v T_0 T_1)) (#:if (#:call µ?v T_0)

(#:call µ?v T_1)
(#:external boolean #f))]

[(µ?v (∩v T_0 T_1)) (#:if (#:call µ?v T_0)
(#:external boolean #t)
(#:call µ?v T_1))]

[(µ?v (·v T_0 T_1)) (#:if (#:call µ?v T_0)
(#:external boolean #t)
(#:if (#:call ν!?v T_0)

(#:call µ?v T_1)
(#:external boolean #f)))]

[(µ?v _) (#:external boolean #f)])

The ν!?v function decides if a temporal contract is algebraically ε.

(ν!?v : (TCon → #:boolean)
[(ν!?v (ε)) (#:external boolean #t)]
[(ν!?v (klv T)) (#:call ν!?v T)]
[(ν!?v (¬v T)) (#:call µ?v T)]
[(ν!?v (∪v T_0 T_1)) (#:if (#:call ν!?v T_0)

(#:call ν!?v T_1)
(#:external boolean #f))]

[(ν!?v (·v T_0 T_1)) (#:if (#:call ν!?v T_0)
(#:call ν!?v T_1)
(#:external boolean #f))]

[(ν!?v (∩v T_0 T_1)) (#:if (#:call ν!?v T_0)
(#:external boolean #t)
(#:call ν!?v T_1))]

[(ν!?v _) (#:external boolean #f)])

Figure 48: Algebraic ⊥-ness decision as Limp metafunction

162 case study : temporal higher-order contracts

(check `+ `- A Av (CCons (chDk `+ `- D Dv) κ))]
[_ (blame `+ S v)])]

[(any/c) (coc κ v)]
[(#:name Sp (predv fn))
(ap fn (TCons v (Nil)) (VCons (flatk v Sp `-) κ))])]

The continuing checking state has two continuation forms. The first
is for checking the cdr contract and finally constructing the blessed
cons.

[#:--> (coc (CCons ϕ κ) v)
(#:match ϕ

[(chDk `+ `- D Dv)
(check `+ `- D Dv (CCons (consk v) κ))]

[(consk Av) (coc κ (cons Av v))])]

The second is for continuing checking function call arguments, send-
ing the return event after the return value passes the output contract,
and finishing an smon evaluation with the contracted value.

[#:--> (coc (HCons ϕ κ) v)
(#:match ϕ

[(ch*k Svs- fn vs-to-check vs-checked)
(check-app Svs- vs-to-check fn (TCons v vs-checked) κ)]

[(sret (#:name fn (Clo/blessed `- `+ _ _ ` η _)))
(send (#:cast TCon (#:lookup a)) event `+ η

(LCons (blret event) κ))
[#:where (timeline a) η]
[#:where event (ret fn v)]]

[(Checking) (coe κ v)])]

Structural contract construction switches to expression evaluation
to both construct flat contracts and evaluate the timeline component
of a temporal arrow contract. The timeline is the final component of
a temporal arrow contract, so the arrk frame carries the other com-
ponents to finally construct the contract. The argument contracts are
reversed, since they are checked in order but accumulated in reverse.

[#:--> (coe (ACons ϕ κ) v)
(#:match ϕ

[(mkflat)
(cos κ (predv pred))
[#:where (#:has-type fnv pred) v]]

[(arrk Svs Sv `)
(cos κ (-->/blessed (#:call reverse #:inst [S] Svs)

Sv ` η))
[#:where (#:has-type Timeline η) v]])]

Temporal contract derivation switches to expression evaluation when
it reaches a bindv to evaluate or a tpredv to check. Once those func-
tion calls finish evaluating, the bindv result is taken to mean the

7.4 evaluation 163

derivative, and the tpredv result determines if the checked event is
in the singleton string of events that tpredv denotes.

[#:--> (coe (PCons ϕ κ) v)
(#:match ϕ

[(mk-tcon)
(cod κ (#:cast TCon v))]
[(pred-to-T)
(cod κ (#:if v (ε) (⊥)))])]

Finally, when a flat contract finishes evaluating, a truish result re-
turns the checked value. A false result means contract failure, mean-
ing the semantics should blame.

[#:--> (coe (VCons (flatk vc _ _) κ) v)
(#:if v

(coc κ vc)
(blame `− Sp vc))]

The full semantics is in the software artifact29. 29 Available at
https://github.
com/ianj/limp/
blob/master/
thocon.rkt

7.4 evaluation

The temporal contract case study pushed the limits of the Limp sys-
tem. Bugs were found and fixed, limited expressiveness was ex-
panded, and “the AAM transformation” is closer to having a tech-
nical meaning (partially completed work undeveloped in this docu-
ment). The Limp system has plenty of room to grow.

Whereas one could write the pushdown abstraction rules given ac-
cess to the store object, the language does not linguistically support
the construction. Without a pushdown abstraction, spurious back-
ward flows from an arrow’s return value contract lead to repeated
temporal events and thus spurious blame. If weak references are
not adequately collected in temporal monitors, repeated calls to con-
tracted functions can lead to spurious blame. Garbage collection is
expensive in terms of the potential state space size. We need to be
able to reuse portions of the analysis when irrelevant parts of the
state have changed, via sparse techniques.

https://github.com/ianj/limp/blob/master/thocon.rkt
https://github.com/ianj/limp/blob/master/thocon.rkt
https://github.com/ianj/limp/blob/master/thocon.rkt
https://github.com/ianj/limp/blob/master/thocon.rkt

8
R E L AT E D W O R K

Program analysis is a rich area where no single analysis is an island.
We all stand on the shoulders of giants. This chapter on related work
is separated into sections as they relate to the different chapters of
this dissertation.

8.1 engineering engineered semantics (optimizing aam)

abstracting abstract machines This work clearly closely
follows Van Horn and Might’s original papers on abstracting ab-
stract machines [96, 97], which in turn is one piece of the large body
of research on flow analysis for higher-order languages (see Midt-
gaard [64] for a thorough survey). The AAM approach sits at the
confluence of two major lines of research: (1) the study of abstract
machines [57] and their systematic construction [78], and (2) the the-
ory of abstract interpretation [20, 21].

abstract interpretation In the framework of abstract inter-
pretation, the accepted method of gathering information about a pro-
gram’s execution is to manipulate the semantics to do some extra task.
For example, it can build an environment at each “control point”30 30 Think of a node in

a control-flow graph.that maps variables to an over-approximation of all the values they
can take — the so-called constant propagation analysis. The modified
semantics is called the non-standard semantics, and can take any form
you want, so long as it remains sound. A programming language
semantics is treated extensionally as the set of all execution traces
that the language deems valid. This viewpoint, while powerful, is so
general it is easy to get lost trying to apply it.

AAM provides a focused viewpoint. Instead of bothering with a
platonic set of all traces, it instead deals with single (computable)
steps of an abstract machine.

frameworks for flow analysis of higher-order programs

Besides the original AAM work, the analysis most similar to that pre-
sented in section 3.2 is the infinitary control-flow analysis of Nielson
and Nielson [70] and the unified treatment of flow analysis by Jagan-
nathan and Weeks [42]. Both are parameterized in such a way that
in the limit, the analysis is equivalent to an interpreter for the lan-
guage, just as is the case here. What is different is that both give a
constraint-based formulation of the abstract semantics rather than a
finite machine model.

165

166 related work

abstract compilation Boucher and Feeley [11] introduced the
idea of abstract compilation, which used closure generation [30] to
improve the performance of control flow analysis. We have adapted
the closure generation technique from compositional evaluators to
abstract machines and applied it to similar effect.

constraint-based program analysis for higher-order lan-
guages Constraint-based program analyses (e.g. [70, 105, 62, 90])
typically compute sets of abstract values for each program point.
These values approximate values arising at run-time for each pro-
gram point. Value sets are computed as the least solution to a set of
(inclusion or equality) constraints. The constraints must be designed
and proved as a sound approximation of the semantics. Efficient
implementations of these kinds of analyses often take the form of
worklist-based graph algorithms for constraint solving, and are thus
quite different from the interpreter implementation. The approach
thus requires effort in constraint system design and implementation,
and the resulting system require verification effort to prove the con-
straint system is sound and that the implementation is correct.

This effort increases substantially as the complexity of the analyzed
language increases. Both the work of maintaining the concrete seman-
tics and constraint system (and the relations between them) must be
scaled simultaneously. However, constraint systems, which have been
extensively studied in their own right, enjoy efficient implementation
techniques and can be expressed in declarative logic languages that
are heavily optimized [12]. Consequently, constraint-based analyses
can be computed quickly. For example, Jagannathan and Wright’s
polymorphic splitting implementation [105] analyses the Vardoulakis
and Shivers benchmark about 5.5 times faster than the fastest imple-
mentation considered here. These analyses compute very different
things, so the performance comparison is not apples-to-apples.

The AAM approach, and the state transition graphs it generates,
encodes temporal properties not found in classical constraint-based
analyses for higher-order programs. Such analyses (ultimately) com-
pute judgments on program terms and contexts, e.g., at expression e,
variable x may have value v. The judgments do not relate the order in
which expressions and context may be evaluated in a program, e.g., it
has nothing to say with regard to question like, “Do we always evalu-
ate e1 before e2?”The state transition graphs can answer these kinds
of queries, but evaluation demonstrated this does not come for free.

8.2 pushdown analysis

pushdown models and memoization The idea of relating
pushdown automata with memoization is not new. In 1971, Stephen
Cook [18] devised a transformation to simulate 2-way (on a fixed

8.2 pushdown analysis 167

input) deterministic pushdown automata in time linear in the size
of the input, that uses the same “context irrelevance” idea to skip
from state q seen before to a corresponding first state that produced
a smaller stack than q was seen with. Such a state is an instance
of what are called terminator states. A terminator state is simply a
state that performs a pop operation. Six years later, Neil D. Jones[45]
simplified the transformation instead to interpret a stack machine pro-
gram to work on-the-fly still on a deterministic machine, but with the
same idea of using memo tables to remember corresponding termina-
tor states. Thirty-six years after that, at David Schmidt’s Festschrift,
Robert Glück extended the technique to two-way non-deterministic
pushdown automata, and showed that the technique can be used
to recognize context-free languages in the standard O(n3) time [39].
Glück’s technique (correctness unproven at time of writing) uses the
meta-language’s stack with a deeply recursive interpretation function
to preclude the use of a frontier and something akin to Ξ1. By explor-
ing the state space depth-first, the interpreter can find all the different
terminators a state can reach one-by-one by destructively updating
the memo table with the “latest” terminator found. The trade-offs
with this technique are that it does not obviously scale to first-class
control, and the search can overflow the stack when interpreting
moderate-sized programs. We have not performed an extensive eval-
uation to test the latter point, however. A minor disadvantage is that
it is also not a fair evaluation strategy when allocation is unbounded.
The technique can nevertheless be a viable alternative for languages
with simple control-flow mechanisms. It has close similarities to “Big-
CFA2” in Vardoulakis’ dissertation [98].

In 1981, Sharir and Pnueli [84] proposed a “functional approach”
to interprocedural program analysis that first captured the notion of
summarization. Summaries themselves look like memo table entries.
The specifics of the technique limited its use to first-order program-
ming languages until CFA2 generalized the approach to higher-order
programs written in continuation-passing-style (CPS).

In 1994, Andersen and Jones [4] took the insight of memoization
Jones used on 2-way pushdown automata and applied it to imper-
ative stack programs. They transform a program to insert textual
pushes and pops in order to run programs faster, using more mem-
ory. This work was for concrete execution, but it has a close lineage
to the techniques used in the abstract by this dissertation, Sharir and
Pnueli, and the following related work.

cfa2 and pdcfa The immediately related work is that of PDCFA
[28, 29], CFA2 [103, 102], and AAM [95], the first two of which we
recreated in full detail. The version of CFA2 that handles call/cc

1 See gluck.rkt in supplementary materials for a lambda calculus analysis in Glück’s
style

168 related work

does not handle composable control, is dependent on a restricted
CPS representation, and has untunable precision for first-class con-
tinuations. Our semantics adapts to call/cc by removing the meta-
continuation operations, and thus this work supersedes theirs. The
extended version of PDCFA that inspects the stack to do garbage col-
lection [29] also fits into our model; the addresses that the stack keeps
alive can be accumulated by “reading through” the continuation ta-
ble, building up the set of addresses in each portion of the stack that
we come across.

stack inspection Stack inspecting flow analyses also exist, but
operate on pre-constructed regular control-flow graphs [7], so the
CFGs cannot be trimmed due to the extra information at construc-
tion time, leading to less precision. Backward analyses for stack in-
spection also exist, with the same prerequisite [15].

analysis of pushdown automata Pushdown models have ex-
isted in the first-order static analysis literature [68, Chapter 7][77],
and the first-order model checking literature [10], for some time. The
important difference when we move higher-order is that the model
construction to feed these methods is an additional problem—the one
we solve here. Additionally, the algorithms employed in these works
expect a complete description of the model up front, rather than work
with a modified step function (also called post), such as in “on-the-
fly” model-checking algorithms for finite state systems [82].

derivation from abstract machines The trend of deriving
static analyses from abstract machines does not stop at flow analyses.
The model-checking community showed how to check temporal logic
queries for collapsible pushdown automata (CPDA), or equivalently,
higher-order recursion schemes, by deriving the checking algorithm
from the Krivine machine [81]. The expressiveness of CPDAs out-
weighs that of PDAs, but it is unclear how to adapt higher-order re-
cursion schemes (HORS) to model arbitrary programming language
features. The method is strongly tied to the simply-typed call-by-
name lambda calculus and depends on finite sized base-types.

The finite-sized base types restriction is close to AAM’s restriction
on base types. Particularly, it is a weak and entirely natural restriction
that takes a change of perspective to look past. In AAM, states are
explored if their exact representation has not been seen before31, so31 With garbage

collection, exactness
can be replaced with
a store subsumption

check.

if there are an unbounded number of representations for base types’
abstractions, then the analysis will not terminate. Abstract interpreta-
tion’s notion of widening is the tool we would use in AAM to force
convergence on abstractions that have an unbounded representation
space. In HORS, there is work on counter-example-guided abstrac-
tion refinement (CEGAR) [53] to break coarse abstractions down to

8.3 semantics of abstract machines 169

finer pieces in order to verify properties. If the process of abstraction-
refinement is well-founded, the “finite types” restriction is not vio-
lated.

8.3 semantics of abstract machines

The term “abstract machine” in the general computer science sense
can mean any theoretical model of computation. In the programming
languages discipline, however, the term “abstract machine” is under-
stood well enough to show “functional correspondences” between
evaluation functions for language terms and equivalent abstract ma-
chines for those languages [2]. The work in functional correspon-
dence is still “by hand,” and never defines the concept of “abstract
machine.” On the one hand, by leaving the term “abstract machine”
open to an informal style of semantics specification, we leave the com-
munity room for innovation and creative freedom. On the other hand,
we don’t even have a working definition that encompasses enough
known abstract machines to be an interesting object of study. A
matter of culture would allow the innovative-yet-definition-defying
“abstract machine” constructions to influence and grow our formal
understanding of the term.

I could argue that the contextual rewriting semantics [51] of PLT
Redex [32] provides a more than suitable foundation for abstract ma-
chines. The focus of this dissertation has been on environment ma-
chines – machines that maintain administrative data structures so
that recursive decompositions are unnecessary. The novel semantics
of PLT Redex is therefore not quite what we need. Perhaps an abstract
machine is simply a conditional term rewriting system (CTRS)? Not
exactly – abstract machines are clumsily expressed in all of Klop’s
characterizations of CTRSs [52]. Conditions depend on notions of
convertability with respect to the relation being defined, joinability
(reduction to a common term), evaluation (with the defined reduc-
tion relation) to specific ground terms, or an external first-order log-
ical system. TRSs are not concerned with non-term data structures.
Pattern matching could be expressed in the first two characterizations,
but with additional unnecessary power.

The K framework [83] has a similar goal of expressing just the con-
crete semantics and getting “for free” a program analysis, but the
group has so-far made light on their progress.

The specifics of store refinements and store updates in Chapter 6

are a combination of strong updates and weak updates. A strong update
is safe if the address is fresh. If an address is not fresh, the semantics
falls back on the more common weak update. The combination of
weak and strong updates is called conservative updates, originally from
Chase et al..

170 related work

8.3.1 Synthesizing correct analyses

The language I developed in Chapter 6 is not an isolated incident of
analysis synthesis. The common distinguishing characteristic of each
synthesis in this section is that none of them provides an executable
concrete semantics.

A remarkable example of a well-designed analysis synthesis tool
is Flow Logic [72]. The language for flow logic is efficiently imple-
mented, and is natural for anyone familiar to constraint-based ap-
proaches to program analysis. The constraint framework is tailored to
regular analyses, so proper call/return matching is outside its grasp.

Rhodium [58] computes the least fixed point of programmer-provided
flow facts on top of a single language model. The novelty of the
tool is that it can guarantee soundness of transformations justified by
analysis results, as long as its generated proof obligations can be dis-
charged. The programmer-provided flow facts are also automatically
checked for soundness. The rules that are definable on control-flow
graph edges cannot introduce new edges, so higher-order analyses
are not within the framework.

The abstract domains that Chapter 6 supports are open-ended, but
not well-exercised. Strong abstract domains are similarly automati-
cally constructable, as shown by Thakur et al. [91]. This approach
finds the most precise inductive invariants of its inputs using a “bi-
lateral approach” and an SMT solver. A bilateral approach is the
combination of both forward and backward analysis to converge on
high precision answers. The primary downside to the approach is
its basis in interprocedural control-flow graphs (ICFGs) instead of a
description of a concrete semantics. Not only is there no executable
model, but the foundation is unsuited for higher-order analysis due
to the inability to add behavior based on calculated facts.

9
C O N C L U S I O N A N D F U T U R E W O R K

I have addressed the itemized problems in the introduction:

• Unsoundness: All of the techniques in this dissertation are de-
signed to be drop-in replacements for both the concrete im-
plementation and analysis, where the two are separated by a
single parameter: the memory allocator. An advantage to this
approach is that the two semantics can be run in parallel and
checked against each other to be confident in their behavior.

• Imprecision and state-space explosion: I have shown how pre-
cisely handling call and return sites of function calls leads to
better predictions and performance. I have also shown how the
precision of allocation and machine states themselves can be
modularly tuned without affecting the correctness of the core
analysis.

• Non-termination: When any component of a program state can
be nested without bound, it is an almost certainty that state-
space exploration will not terminate in general. I developed a
language for expressing abstract machines in the natural way
with recursive constructions. The language’s support for alloca-
tion enables AAM-like store-allocation to prevent unbounded
nesting. The only source of new values is with memory allo-
cation. A finite allocation strategy is easier to control than an
entire state space - any allocation strategy is sound.

The techniques developed in this dissertation are not only light-
weight, they are relatively easy to prove correct. The key takeaway
from this work is that abstraction should be an external input to an
analysis framework. When the inputs that guide abstraction can only
weaken predictions and not correctness, we get a single, more trust-
worthy framework that doubles as a language interpreter and a pro-
gram analyzer.

I have shown implementation techniques that are all rigorous and
orders of magnitude better than a naive translation of “math” to code.
Indeed, the result of the techniques is still “math,” just structured in
a way more amenable to efficient implementation.

9.1 future work

a static semantics for aam I have an unfinished language,
called Limp, on top of the core metalanguage in Chapter 6. Synthe-
sizing an allocation function is a chore, which I conjecture can be

171

172 conclusion and future work

mitigated by “heapification” annotations on types. The annotations
themselves can be inferred for recursive types. The heapification an-
notations are treated as the annotated type for purposes of subtyping,
but any removal or addition of a heapification annotation during sub-
typing is treated as an explicit coercion. For example, a stack is a list
of frames:

µList.∪ {(Nil), (Cons ϕ List)}

where we can determine by type structure that List is a recursive
reference that should thus be heapified. When a semantics pushes a
frame on the stack, the List type we have in hand must be coerced to
a heapified List type. Adding a heapification annotation translates to
a store-allocation. Removing a heapification annotation translates to
a store lookup.

When all recursive constructions are identified and translated to
explicit address manipulation, the result is an “AAM-ified” semantics.
Indeed I believe that a type-directed transformation gives algorithmic
meaning to “the AAM transformation.”

improved limp performance The Limp implementation is ripe
for mechanizing the systematic implementation strategies of the first
part of the dissertation. The software artifact at the time of writing
contains no data specialization or imperative strategies to efficiently
represent and explore the state space. Ideally, I would like to write
a Limp to Racket compiler so that abstract machines in Limp are im-
plemented exactly how I would write them by hand, or better. Meta-
function evaluation is especially lacking in smarts. For functions with
simple recursion schemes on trusted data structures, expensive mem-
oization to prevent non-termination is unnecessary.

The run-time dependency analysis that TAJS performs to do sparse
analysis appears to be general enough to apply to Limp’s evaluation
model. Sparse analyses are crucial to analysis scalability.

improved limp expressiveness If Limp could express the no-
tion of a context, and mark a state component as “the stack,” then it
could import the pushdown techniques in Chapter 4. I suspect that
determining which component is “stack-like” is a fairly simple analy-
sis. Since the reduction relation requires knowing the type of a state,
the analysis could search to see if each state variant contains a com-
ponent isomorphic to a list to designate as “the stack.” Further, the
stack must be treated in a “stack-like” fashion - destruction that never
drops “the rest” of the stack, and bounded construction that always
keeps “the rest” of the stack within the output stack.

Pushdown treatment of stack-capturing semantics requires a more
advanced analysis. If the component marked as “the stack” from anal-
ysis of the state type ever flows to the store (an update expression’s

9.1 future work 173

type contains a supertype of “the stack”), we have to introduce a con-
text approximation function. I am less sure how the other interactions
with the stack would be managed.

A glaring omission from this whole dissertation is treatment of un-
knowns - black-hole values that can be arbitrarily manipulated by an
adversarial (AKA demonic) context. Automatically generating sound
demonic contexts might be easy, but the predictions may be too con-
servative. Expressing language-provided program invariants imper-
vious to manipulation by any context is a topic of deep research in
logical relations and bisimulations. On one hand, this appears to
be a big opportunity for abstract interpretation. Kripke logical rela-
tions for verifying imperative and concurrent programs include “pro-
tocols” that appear to be small abstract machines [94, 27, 93]. On the
other hand, these logical relations are highly specialized to specific
language features and may be difficult to automatically generate and
apply in the context of abstract abstract machines.

improved limp precision The forward-execution model in Limp
limits its usefulness and precision. Forward analyses start with an
under-approximation of the state space; we can only trust that the
final result is sound because there is nothing more to add to the
approximation. Therefore a long-running forward analysis cannot
be stopped mid-stream to extract a sound result. Backward analy-
ses start with an over-approximation that gets trimmed until nothing
more can be soundly removed. The over-approximations can be too
coarse to analyze efficiently - imagine a higher-order program where
all calls to first-class functions are treated as calls to all functions that
exist in the program. The first-order abstract interpretation commu-
nity has known this since the beginning (Cousot and Cousot’s debut
AI paper [20] discussed “dual approximation methods”). After an
extensive literature search, I found no higher-order analysis methods
that apply these dual methods.

Backwards-executing only approaches exist for higher-order control-
flow analyses [9, 74, 88]. Their commonality is in the use of the set-
constraint formulation of 0CFA as a logic program that can “run back-
wards.” Some of the difficulty is definitely in procedure-call bound-
aries, where backward execution requires knowing all the reaching
closures to the call. There is definitely some synergy to be gained
from combining forward and backward analyses.

B I B L I O G R A P H Y

[1] Michael D. Adams, Andrew W. Keep, Jan Midtgaard, Matthew
Might, Arun Chauhan, and R. Kent Dybvig. Flow-sensitive
type recovery in linear-log time. In Proceedings of the 2011 ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’11, pages 483–498. ACM,
2011.

[2] Mads S. Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midt-
gaard. A functional correspondence between evaluators and
abstract machines. In PPDP ’03: Proceedings of the 5th ACM SIG-
PLAN international conference on Principles and practice of declari-
tive programming, pages 8–19. ACM Press, 2003.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison Wesley, 1st edition,
1986.

[4] Nils Andersen and Neil D. Jones. Generalizing cook’s trans-
formation to imperative stack programs. In Juhani Karhumäki,
Hermann A. Maurer, and Grzegorz Rozenberg, editors, Results
and Trends in Theoretical Computer Science, Colloquium in Honor of
Arto Salomaa, Graz, Austria, June 10-11, 1994, Proceedings, volume
812 of Lecture Notes in Computer Science, pages 1–18. Springer,
1994. ISBN 3-540-58131-6. doi: 10.1007/3-540-58131-6_33. URL
http://dx.doi.org/10.1007/3-540-58131-6_33.

[5] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, 1997.

[6] J. Michael Ashley and R. Kent Dybvig. A practical and flexible
flow analysis for higher-order languages. ACM Trans. Program.
Lang. Syst., 20(4):845–868, 1998.

[7] Massimo Bartoletti, Pierpaolo Degano, and Gian L. Ferrari.
Stack inspection and secure program transformations. Interna-
tional Journal of Information Security, 2(3-4):187–217, 2004.

[8] Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan. On
the static and dynamic extents of delimited continuations. Sci-
ence of Computer Programming, 60(3):274–297, 2006.

[9] Sandip K. Biswas. A demand-driven set-based analysis. In
POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 372–385.
ACM, 1997.

175

http://dx.doi.org/10.1007/3-540-58131-6_33

176 Bibliography

[10] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reacha-
bility analysis of pushdown automata: Application to model-
checking. In Antoni Mazurkiewicz and Józef Winkowski, edi-
tors, CONCUR ’97: Concurrency Theory, volume 1243 of Lecture
Notes in Computer Science, pages 135–150. Springer Berlin Hei-
delberg, 1997.

[11] Dominique Boucher and Marc Feeley. Abstract compilation: A
new implementation paradigm for static analysis. In Tibor Gy-
imóthy, editor, Compiler Construction: 6th International Confer-
ence, CC’96 Linköping, Sweden, pages 192–207, 1996.

[12] Martin Bravenboer and Yannis Smaragdakis. Strictly declara-
tive specification of sophisticated points-to analyses. In OOP-
SLA ’09: Proceedings of the 24th annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, 2009.

[13] M. C. Browne, E. M. Clarke, and O. Grümberg. Characterizing
finite kripke structures in propositional temporal logic. Theoret-
ical Computer Science, 59(1-2):115–131, 1988.

[14] Janusz A. Brzozowski. Derivatives of regular expressions. J.
ACM, 11(4):481–494, 1964.

[15] Byeong-Mo Chang. Static check analysis for Java stack inspec-
tion. SIGPLAN Notices, 41(3):40–48, 2006.

[16] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Anal-
ysis of pointers and structures. In Proceedings of the ACM SIG-
PLAN 1990 Conference on Programming Language Design and Im-
plementation, PLDI ’90, pages 296–310. ACM, 1990.

[17] John Clements and Matthias Felleisen. A tail-recursive machine
with stack inspection. ACM Trans. Program. Lang. Syst., 26(6):
1029–1052, 2004.

[18] Stephen A. Cook. Linear time simulation of deterministic two-
way pushdown automata. In IFIP Congress (1), 1971.

[19] P. Cousot. Abstract interpretation and application to static anal-
ysis (invited tutorial). Part I: Basic concepts of abstract interpre-
tation; Part II: Applications of abstract interpretation. In Proc.
First IEEE & IFIP International Symposium on Theoretical Aspects
of Software Engineering, 2007.

[20] Patrick Cousot and Radhia Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 238–252. ACM, 1977.

Bibliography 177

[21] Patrick Cousot and Radhia Cousot. Systematic design of pro-
gram analysis frameworks. In Proceedings of the 6th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL ’79, pages 269–282. ACM, 1979.

[22] Olivier Danvy. An Analytical Approach to Program as Data Objects.
DSc thesis, Department of Computer Science, Aarhus Univer-
sity, 2006.

[23] Olivier Danvy and Andrzej Filinski. Abstracting control. In
LFP ’90: Proceedings of the 1990 ACM Conference on LISP and
Functional Programming, pages 151–160. ACM, 1990.

[24] Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction
semantics. Research Report BRICS RS-04-26, Department of
Computer Science, Aarhus University, 2004.

[25] Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias
Felleisen. Complete monitors for behavioral contracts. In Pro-
ceedings of the 21st European Symposium on Programming (ESOP),
pages 211–230, 2012.

[26] Tim Disney, Cormac Flanagan, and Jay McCarthy. Tempo-
ral higher-order contracts. In ICFP ’11 Proceeding of the 16th
ACM SIGPLAN International Conference on Functional Program-
ming, number 9 in ICFP, pages 176–188. ACM, 2011.

[27] Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of
higher-order state and control effects on local relational rea-
soning. Journal of Functional Programming, 22:477–528, 9 2012.
ISSN 1469-7653. doi: 10.1017/S095679681200024X. URL http:
//journals.cambridge.org/article_S095679681200024X.

[28] Christopher Earl, Matthew Might, and David Van Horn. Push-
down control-flow analysis of higher-order programs. In Work-
shop on Scheme and Functional Programming, 2010.

[29] Christopher Earl, Ilya Sergey, Matthew Might, and David Van
Horn. Introspective pushdown analysis of higher-order pro-
grams. In Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’12, pages 177–188.
ACM, 2012.

[30] Marc Feeley and Guy Lapalme. Using closures for code gener-
ation. Comput. Lang., 12(1):47–66, 1987.

[31] Matthias Felleisen. The Calculi of Lambda-v-CS Conversion: A
Syntactic Theory of Control and State in Imperative Higher-Order
Programming Languages. PhD thesis, Indiana University, 1987.

http://journals.cambridge.org/article_S095679681200024X
http://journals.cambridge.org/article_S095679681200024X

178 Bibliography

[32] Matthias Felleisen, Robert B. Findler, and Matthew Flatt. Se-
mantics Engineering with PLT Redex. MIT Press, 2009.

[33] Andrzej Filinski. Representing monads. In Proceedings of the 21st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’94, pages 446–457. ACM, 1994.

[34] Robert B. Findler and Matthias Felleisen. Contracts for higher-
order functions. In ICFP ’02: Proceedings of the seventh ACM SIG-
PLAN International Conference on Functional Programming, ICFP,
pages 48–59. ACM, 2002.

[35] Dionna Amalie Glaze and David Van Horn. Abstracting ab-
stract control. In Andrew P. Black and Laurence Tratt, ed-
itors, DLS’14, Proceedings of the 10th ACM Symposium on Dy-
namic Languages, part of SLASH 2014, Portland, OR, USA, October
20-24, 2014, pages 11–22. ACM, 2014. ISBN 978-1-4503-3211-8.
doi: 10.1145/2661088.2661098. URL http://doi.acm.org/10.
1145/2661088.2661098.

[36] Dionna Amalie Glaze, Nicholas Labich, Matthew Might, and
David Van Horn. Optimizing abstract abstract machines. In
Greg Morrisett and Tarmo Uustalu, editors, Proceedings of the
18th ACM SIGPLAN international conference on Functional pro-
gramming. ACM SIGPLAN, ACM Press, 2013.

[37] Dionna Amalie Glaze, Ilya Sergey, Christopher Earl, Matthew
Might, and David Van Horn. Pushdown flow analysis with
abstract garbage collection. Journal of Functional Programming,
24:218–283, 2014.

[38] Dionna Amalie Glaze, Ilya Sergey, Christopher Earl, Matthew
Might, and David Van Horn. Pushdown flow analysis with
abstract garbage collection. Journal of Functional Programming,
24(2-3):218–283, 2014.

[39] Robert Glück. Simulation of two-way pushdown automata re-
visited. In Semantics, Abstract Interpretation, and Reasoning about
Programs: Essays Dedicated to David A. Schmidt on the Occasion of
his Sixtieth Birthday, 2013.

[40] Ben Hardekopf, Ben Wiedermann, Berkeley R. Churchill, and
Vineeth Kashyap. Widening for Control-Flow. In Kenneth L.
McMillan and Xavier Rival, editors, VMCAI, volume 8318 of
Lecture Notes in Computer Science, pages 472–491. Springer, 2014.

[41] Pieter H. Hartel, Marc Feeley, Martin Alt, Lennart Augustsson,
Peter Baumann, Marcel Beemster, Emmanuel Chailloux, Chris-
tine H. Flood, Wolfgang Grieskamp, John H. G. Van Gronin-
gen, Kevin Hammond, Bogumil Hausman, Melody Y. Ivory,

http://doi.acm.org/10.1145/2661088.2661098
http://doi.acm.org/10.1145/2661088.2661098

Bibliography 179

Richard E. Jones, Jasper Kamperman, Peter Lee, Xavier Leroy,
Rafael D. Lins, Sandra Loosemore, Niklas Röjemo, Manuel Ser-
rano, Jean P. Talpin, Jon Thackray, Stephen Thomas, Pum Wal-
ters, Pierre Weis, and Peter Wentworth. Benchmarking imple-
mentations of functional languages with “pseudoknot”, a float-
intensive benchmark. Journal of Functional Programming, 6(04):
621–655, 1996.

[42] Suresh Jagannathan and Stephen Weeks. A unified treatment of
flow analysis in higher-order languages. In POPL ’95: Proceed-
ings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 393–407. ACM Press, 1995.

[43] Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and An-
drew Wright. Single and loving it: must-alias analysis for
higher-order languages. In POPL ’98: Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 329–341. ACM, 1998.

[44] Simon H. Jensen, Anders Møller, and Peter Thiemann. Inter-
procedural analysis with lazy propagation. In Proceedings of
the 17th International Conference on Static Analysis, SAS’10, pages
320–339. Springer-Verlag, 2010.

[45] Neil D. Jones. A note on linear time simulation of deterministic
two-way pushdown automata. Inf. Process. Lett., 6(4):110–112,
August 1977.

[46] Neil D. Jones. Flow analysis of lambda expressions (prelimi-
nary version). In Proceedings of the 8th Colloquium on Automata,
Languages and Programming, pages 114–128. Springer-Verlag,
1981.

[47] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wag-
ner, Kevin Gibbons, John Sarracino, Ben Wiedermann, and Ben
Hardekopf. JSAI: a static analysis platform for javascript. In
Shing-Chi Cheung, Alessandro Orso, and Margaret-Anne D.
Storey, editors, Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, (FSE-22),
Hong Kong, China, November 16 - 22, 2014, pages 121–132. ACM,
2014.

[48] Gary A. Kildall. A unified approach to global program op-
timization. In Proceedings of the 1st annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages,
POPL ’73, pages 194–206. ACM, 1973.

[49] Oleg Kiselyov. An argument against call/cc, 2012. http://
okmij.org/ftp/continuations/against-callcc.html.

http://okmij.org/ftp/continuations/against-callcc.html
http://okmij.org/ftp/continuations/against-callcc.html

180 Bibliography

[50] Oleg Kiselyov and Chung chieh Shan. Delimited continuations
in operating systems. In Boicho Kokinov, DanielC Richardson,
ThomasR Roth-Berghofer, and Laure Vieu, editors, Modeling
and Using Context, Lecture Notes in Computer Science, pages
291–302. Springer Berlin Heidelberg, 2007.

[51] Casey Klein, Jay A. McCarthy, Steven Jaconette, and Robert B.
Findler. A semantics for Context-Sensitive reduction semantics.
In Hongseok Yang, editor, Programming Languages and Systems
- 9th Asian Symposium, APLAS 2011, Kenting, Taiwan, December
5-7, 2011. Proceedings, volume 7078 of Lecture Notes in Computer
Science, pages 369–383. Springer, 2011.

[52] J. Klop. Term Rewriting Systems, volume 2. 1992.

[53] Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. Predicate
abstraction and CEGAR for higher-order model checking. In
Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI, pages 222–233.
ACM, 2011.

[54] E. E. Kohlbecker and M. Wand. Macro-by-example: Deriving
syntactic transformations from their specifications. In Proceed-
ings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, POPL ’87, pages 77–84. ACM, 1987.

[55] George Kuan, David Macqueen, and Robert Findler. A rewrit-
ing semantics for type inference. pages 426–440. 2007.

[56] George Kuan, David MacQueen, and Robert B. Findler. A
rewriting semantics for type inference. In Rocco D. Nicola, ed-
itor, Programming Languages and Systems, 16th European Sympo-
sium on Programming, volume 4421, 2007.

[57] Peter J. Landin. The mechanical evaluation of expressions. The
Computer Journal, 6(4):308–320, 1964.

[58] Sorin Lerner, Todd D. Millstein, Erika Rice, and Craig Cham-
bers. Automated soundness proofs for dataflow analyses and
transformations via local rules. In Jens Palsberg and Martín
Abadi, editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2005,
Long Beach, California, USA, January 12-14, 2005, pages 364–377.
ACM, 2005. ISBN 1-58113-830-X. doi: 10.1145/1040305.1040335.
URL http://doi.acm.org/10.1145/1040305.1040335.

[59] Panagiotis Manolios. Mechanical Verification of Reactive Systems.
PhD thesis, University of Texas at Austin, 2001.

[60] Laurent Mauborgne and Xavier Rival. Trace partitioning in ab-
stract interpretation based static analyzers. In M. Sagiv, editor,

http://doi.acm.org/10.1145/1040305.1040335

Bibliography 181

European Symposium on Programming (ESOP’05), volume 3444 of
Lecture Notes in Computer Science, pages 5–20. Springer-Verlag,
2005.

[61] Jay McCarthy. Concerning PLT webserver commit 72ec6342ea.
private communication.

[62] Philippe Meunier, Robert B. Findler, and Matthias Felleisen.
Modular set-based analysis from contracts. In POPL ’06: Con-
ference record of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL, pages 218–231.
ACM, 2006.

[63] Bertrand Meyer. Eiffel : The Language. Prentice Hall, 1991.

[64] Jan Midtgaard. Control-flow analysis of functional programs.
ACM Computing Surveys, 2011.

[65] Matthew Might and Panagiotis Manolios. A posteriori sound-
ness for non-deterministic abstract interpretations. In Proceed-
ings of the 10th International Conference on Verification, Model
Checking, and Abstract Interpretation, VMCAI ’09, pages 260–274.
Springer-Verlag, 2009.

[66] Matthew Might and Olin Shivers. Improving flow analyses via
ΓCFA: Abstract garbage collection and counting. In Proceedings
of the 11th ACM SIGPLAN International Conference on Functional
Programming, pages 13–25, 2006.

[67] Steven Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1 edition, 1997.

[68] Steven S. Muchnick and Neil D. Jones. Program Flow Analysis:
Theory and Applications. Prentice Hall, 1981.

[69] Phúc C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn.
Soft contract verification. In Proceedings of the 19th ACM SIG-
PLAN International Conference on Functional Programming, ICFP
’14, pages 139–152, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2873-9. doi: 10.1145/2628136.2628156. URL http:
//doi.acm.org/10.1145/2628136.2628156.

[70] Flemming Nielson and Hanne R. Nielson. Infinitary control
flow analysis: a collecting semantics for closure analysis. In
POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 332–345.
ACM Press, 1997.

[71] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Prin-
ciples of Program Analysis. Springer-Verlag, 1999.

http://doi.acm.org/10.1145/2628136.2628156
http://doi.acm.org/10.1145/2628136.2628156

182 Bibliography

[72] Hanne Riis Nielson and Flemming Nielson. Flow logic: A
multi-paradigmatic approach to static analysis. In Torben Æ.
Mogensen, David A. Schmidt, and Ivan Hal Sudborough, ed-
itors, The Essence of Computation, Complexity, Analysis, Trans-
formation. Essays Dedicated to Neil D. Jones [on occasion of his
60th birthday], volume 2566 of Lecture Notes in Computer Science,
pages 223–244. Springer, 2002. ISBN 3-540-00326-6. doi: 10.
1007/3-540-36377-7_11. URL http://dx.doi.org/10.1007/
3-540-36377-7_11.

[73] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and
Kwangkeun Yi. Design and implementation of sparse global
analyses for C-like languages. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 229–238. ACM, 2012.

[74] Christian W. Probst. A demand-driven solver for constraint-
based control flow analysis. PhD thesis, Saarland Univer-
sity, 2004. URL http://scidok.sulb.uni-saarland.de/
volltexte/2004/219/index.html.

[75] Christian Queinnec. Continuations and web servers. Higher-
Order and Symbolic Computation, 17(4):277–295, 2004.

[76] John H. Reif and Harry R. Lewis. Symbolic evaluation and
the global value graph. In Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages,
POPL ’77, pages 104–118. ACM, 1977.

[77] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise inter-
procedural dataflow analysis via graph reachability. In Proceed-
ings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’95, pages 49–61. ACM,
1995.

[78] John C. Reynolds. Definitional interpreters for Higher-Order
programming languages. Higher-Order and Symbolic Computa-
tion, 11(4):363–397, 1998.

[79] Grigore Rosu. Specifying languages and verifying pro-
grams with K. In Proceedings of 15th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC’13), IEEE/CPS. IEEE, September 2013. Invited talk.
To appear.

[80] Grigore Roşu and Traian Florin Şerbănuţă. An overview of the
K semantic framework. Journal of Logic and Algebraic Program-
ming, 79(6):397–434, 2010. doi: 10.1016/j.jlap.2010.03.012.

http://dx.doi.org/10.1007/3-540-36377-7_11
http://dx.doi.org/10.1007/3-540-36377-7_11
http://scidok.sulb.uni-saarland.de/volltexte/2004/219/index.html
http://scidok.sulb.uni-saarland.de/volltexte/2004/219/index.html

Bibliography 183

[81] S. Salvati and I. Walukiewicz. Krivine machines and higher-
order schemes. In Proceedings of the 38th International Confer-
ence on Automata, Languages and Programming - Volume Part II,
ICALP’11, pages 162–173. Springer-Verlag, 2011.

[82] Stefan Schwoon and Javier Esparza. A note on on-the-fly veri-
fication algorithms. In Nicolas Halbwachs and Lenore D. Zuck,
editors, TACAS, volume 3440 of Lecture Notes in Computer Sci-
ence, pages 174–190. Springer, 2005. ISBN 3-540-25333-5.

[83] Traian Florin Şerbănuţa, Andrei Arusoaie, David Lazar, Chucky
Ellison, Dorel Lucanu, and Grigore Roşu. The K primer (ver-
sion 3.3). Technical report, University of Illinois at Urbana-
Champaign, 2014.

[84] Micha Sharir and Amir Pnueli. Two Approaches to Interprocedural
Data Flow Analysis, chapter 7, pages 189–233. Prentice-Hall, Inc.,
1981.

[85] Olin Shivers. Control flow analysis in Scheme. In PLDI ’88:
Proceedings of the ACM SIGPLAN 1988 Conference on Program-
ming Language Design and Implementation, PLDI, pages 164–174.
ACM, 1988.

[86] Olin Shivers and Aaron J. Turon. Modular rollback through
control logging: A pair of twin functional pearls. In Proceedings
of the 16th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’11, pages 58–68. ACM, 2011.

[87] Olin G. Shivers. Control-Flow Analysis of Higher-Order Languages.
PhD thesis, Carnegie Mellon University, 1991.

[88] S. Alexander Spoon and Olin Shivers. Demand-driven type in-
ference with subgoal pruning: trading precision for scalability.
In Martin Odersky, editor, Proceedings of the 18th European Con-
ference on Object-Oriented Programming (ECOOP 2004), number
3086 in Lecture Notes in Computer Science, pages 51–74, Oslo,
Norway, June 2004. Springer. ISBN 3-540-22159-X.

[89] Stefan Staiger-Stöhr. Practical integrated analysis of pointers,
dataflow and control flow. ACM Trans. Program. Lang. Syst., 35

(1):5, 2013.

[90] Paul A. Steckler and Mitchell Wand. Lightweight closure con-
version. ACM Trans. Program. Lang. Syst., 19(1):48–86, 1997.

[91] Aditya V. Thakur, Akash Lal, Junghee Lim, and Thomas W.
Reps. Posthat and all that: Automating abstract interpreta-
tion. Electr. Notes Theor. Comput. Sci., 311:15–32, 2015. doi: 10.
1016/j.entcs.2015.02.003. URL http://dx.doi.org/10.1016/
j.entcs.2015.02.003.

http://dx.doi.org/10.1016/j.entcs.2015.02.003
http://dx.doi.org/10.1016/j.entcs.2015.02.003

184 Bibliography

[92] Sam Tobin-Hochstadt and David Van Horn. Higher-order sym-
bolic execution via contracts. In Proceedings of the ACM Inter-
national Conference on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA, pages 537–554. ACM, 2012.

[93] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: nav-
igating weak memory with ghosts, protocols, and separation.
In Andrew P. Black and Todd D. Millstein, editors, Proceed-
ings of the 2014 ACM International Conference on Object Ori-
ented Programming Systems Languages & Applications, OOPSLA
2014, part of SPLASH 2014, Portland, OR, USA, October 20-
24, 2014, pages 691–707. ACM, 2014. ISBN 978-1-4503-2585-1.
doi: 10.1145/2660193.2660243. URL http://doi.acm.org/10.
1145/2660193.2660243.

[94] Aaron J. Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal,
and Derek Dreyer. Logical relations for fine-grained concur-
rency. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’13,
pages 343–356, New York, NY, USA, 2013. ACM. ISBN 978-1-
4503-1832-7. doi: 10.1145/2429069.2429111. URL http://doi.
acm.org/10.1145/2429069.2429111.

[95] David Van Horn and Matthew Might. Abstracting abstract ma-
chines. In Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, ICFP, pages 51–62. ACM,
2010.

[96] David Van Horn and Matthew Might. Abstracting abstract ma-
chines: a systematic approach to higher-order program analysis.
Communications of the ACM, 54:101–109, 2011.

[97] David Van Horn and Matthew Might. Systematic abstraction of
abstract machines. Journal of Functional Programming, 22(Special
Issue 4-5):705–746, 2012.

[98] Dimitrios Vardoulakis. CFA2: Pushdown Flow Analysis for Higher-
Order Languages. PhD thesis, Northeastern University, 2012.

[99] Dimitrios Vardoulakis and Olin Shivers. CFA2: a Context-Free
Approach to Control-Flow Analysis. In European Symposium
on Programming (ESOP), volume 6012 of LNCS, pages 570–589.
Springer, 2010.

[100] Dimitrios Vardoulakis and Olin Shivers. CFA2: a Context-Free
approach to Control-Flow analysis. Logical Methods in Computer
Science, 7(2), 2011.

[101] Dimitrios Vardoulakis and Olin Shivers. Pushdown flow anal-
ysis of first-class control. In Proceedings of the 16th ACM SIG-

http://doi.acm.org/10.1145/2660193.2660243
http://doi.acm.org/10.1145/2660193.2660243
http://doi.acm.org/10.1145/2429069.2429111
http://doi.acm.org/10.1145/2429069.2429111

Bibliography 185

PLAN International Conference on Functional Programming, ICFP
’11, pages 69–80. ACM, 2011.

[102] Dimitrios Vardoulakis and Olin Shivers. Pushdown flow anal-
ysis of first-class control. In Proceedings of the 16th ACM SIG-
PLAN International Conference on Functional Programming, ICFP
’11, pages 69–80. ACM, 2011.

[103] Dimitrios Vardoulakis and Olin Shivers. CFA2: a Context-Free
Approach to Control-Flow Analysis. Logical Methods in Com-
puter Science, 7(2:3):1–39, 2011.

[104] Mark N. Wegman and F. Kenneth Zadeck. Constant propaga-
tion with conditional branches. ACM Trans. Program. Lang. Syst.,
13(2):181–210, 1991.

[105] Andrew K. Wright and Suresh Jagannathan. Polymorphic split-
ting: an effective polyvariant flow analysis. ACM Trans. Pro-
gram. Lang. Syst., 20(1):166–207, 1998.

[106] Feng Zhao. An O(N) algorithm for Three-Dimensional N-Body
simulations. Master’s thesis, MIT, 1987.

Part III

A P P E N D I X

N O TAT I O N A L C O N V E N T I O N S

This dissertation follows a strict set of notational rules with respect
to data and control-flow representation, scoping rules, and computa-
tional versus propositional relations. This appendix is meant to be
used as a “legend” to help read the mathematical constructions of
this document.

1 meta rules

The following rules are for notations themselves. If a binary rela-
tion has an overset ‘?’, then it is meant as a decision procedure for
membership in the relation. In the cases decision problems arise, the
procedures should be obvious from the relation definition. The sim-

plest decision we will see is x ?
= y, where x and y are some type A

with decidable equality (for example, natural numbers or containers
whose members are of a type with decidable equality).

I will give spaces of data as equalities or itemizations in EBNF.
When I write

e ∈ Expr ::= Var(x) | App(e, e) | Lam(x, e)

x ∈ Name

I mean

1. e is a metavariable that, by convention, will be of Expr type (also
e with primes, subscripts and superscripts will be Expr type);

2. e : Expr∗ emboldened is a list of the type of the metavariable’s
type by convention. Here we have a list of expressions; and

3. Expr is a closed inductive data type whose variants (named in-
jections) are Var, App, and Lam with types

Var : Name→ Expr

App : Expr→ Expr∗ → Expr

Lam : Name∗ → Expr→ Expr

I use two notations for list metavariables. As above, e is a list
that is indexable - its ith element is written ei. The metavariable e is
also an element of Expr∗, but is interpolatable as e . . . following the
rules of Kohlbecker and Wand [54]. For example, if e = 〈1, 2, 3〉 and
f : N→N→N→ X, then

f(e . . .) = f(1, 2, 3)

189

190 notational conventions

Similarly, the metavariable ẽ, is an element of ℘(Expr) (the power-
set of Expr) and is also interpolatable in contexts that are associative
and commutative (the order of interpolation doesn’t matter). Any
metavariable x explicitly in ℘(E) or E∗ is interpolatable (x . . .) and
indexable (xi).

2 data

• 〈e0, . . . , en−1〉: a tuple of n-many elements.

• If t is in scope, ti is the ith element of the t list.

3 conditionals

The most general form of conditional expression I use in the dis-
sertation is pattern matching. A datatype T with n-many variants
Vi(t

i
j, . . .) is primitively eliminated with a case expression. If e : T

and fv(tij) . . . ` rhsi : A for each i ∈ {0 . . . n− 1}, then the following
expression is type A:

case e of

V0(t
0
j . . .) :rhs0

...

Vn−1(t
n−1
j . . .) :rhsn−1

Incomplete matches are partial definitions. I may also provide fall-
through cases via else or _, meaning I don’t care about e’s value, or
I will give an arbitrary binder (say, x) if I wish to refer to e’s value.
In uncommon cases, I will use the same binder in a variant pattern
to state a side condition that the corresponding subterms must be
equal (and the equality will be decidable). In rare occasions I will
give explicit side conditions that must evaluate to tt in order for a
case to “match.”

Another form is the ‘if’ expression. I use the Dijkstra notation for
‘if’, where guard→ then, else desugars to

case guard of

tt : then

ff : else

4 quantification and scope

Set and map comprehensions are commonplace in the dissertation.
The scoping and implicit quantification rules are important for un-
derstanding the formal meanings.

A comprehension is of the form

5 lifting and ordering 191

left-delimiter element-expression (optional ∈ domain-expression) :
variable-constraints right-delimiter

The delimiters are { } for set construction, and [] for finite func-
tion (map) construction. The free variables in element-expression are
universally quantified in their domain of discourse (shadowing the
local context), and in scope in variable-constraints. The free variables
in variable-constraints that are bound in the local context reference the
local context. The free variables in variable-constraints that are not
bound in the local context are existentially quantified. The entire
comprehension is read as “the largest collection of element-expression
that further satisfy variable-constraints.”

Explicit quantifiers such as ∃ and ∀ have scope extending to the
farthest right extent with balanced parentheses.

I use x ≡ S(y, . . .) to mean “xmatches S(y, . . .);” alternatively, there
exist elements y . . . such that x = S(y, . . .).

5 lifting and ordering

Most of the dissertation depends on partial orders and implicit struc-
tural lifting. This means that if I define a function f : A → B, and
we come across a container c containing A, then f(c) is a generic map
over c that applies f to elements of type A. Additionally, if A has a
defined order v, then all containers of A are ordered by a pointwise
lifting. For instance,

• Sets: Given S,S ′ : ℘(A), if ∀a ∈ S.∃a ′ ∈ S ′.a v a ′, then S v S ′.

• Partial functions: Given f,g : B ⇀ A, if ∀b ∈ dom(f).f(b) v
g(b) then f v g.

• Datatypes: (by example of 2-3 trees) Inductively,

1. if a v a ′ then Leaf(a) v Leaf(a ′)

2. if t0 v t ′0 and t1 v t ′1 then Two(t0, t1) v Two(t ′0, t ′1).

3. if t0 v t ′0, t1 v t ′1, and t2 v t ′2 then Three(t0, t1, t2) v
Three(t ′0, t ′1, t ′2).

Generally, variants of the datatype must align, and their sub-
terms must be covariantly ordered.

dt̂eσ̂ : lift a term t̂ to be an abstract term; if t̂ is a delayed derefer-
ence, use σ̂ to dereference.

6 lists

I use tuple notation, string notation, and cons notation for lists. String
notation does not name more than the first character A list of num-
bers 1, 2, 3, in that order can be written as

192 notational conventions

• Tuple notation: 〈1, 2, 3〉

• String notation: 1` where ` is a metavariable denoting the list of
numbers 2, 3

• Cons notation: 1 : ` with similar `, and additionally 1 : 2 : 3 : ε

In tuple notation the empty list is written as 〈〉. In string and cons
notation, the empty list is ε.

The append operation for lists is written differently for the different
list notations. For lists ` denoting 1, 2, 3 and ` ′ denoting 4, 5, 6:

• Tuple notation: (++`, ` ′), 〈` . . . , ` ′ . . .〉, 〈1, 2, 3, ` ′ . . .〉, and 〈` . . . , 4, 5, 6〉.

• String notation: `` ′

• Cons notation: (++`, ` ′), `++` ′.

7 sets

Union (∪), intersection (∩), membership (∈), subset (⊆), proper subset
(⊂) are all standard. Any comma-separated big operations are nested
big operations. For example,⋃

a∈A,b∈B(a)

P(a,b) =
⋃
a∈A

⋃
b∈B(a)

P(a,b)

The powerset of a set A is written ℘(A). The set of finite subsets of
A is written ℘fin(A).

8 records

A record is human-friendly way to write large tuples: instead of po-
sitions there are field names. If a record r has a field f, the notation
to get the value in f is r.f. To create a new record where f is set to
some value v, we write r[f := v]. Multiple fields can be updated with
comma-separated := directives, e.g., r[f0 := v0, f1 := v1].

Sometimes I will treat tuples as records where the field names are
the metavariables used to define the tuple in the BNF grammar. For
example, if I wrote ς ∈ State ::= 〈e, ρ,σ, κ〉 in the grammar, and I have
a state ς ′ ≡ 〈e ′, ρ ′,σ ′, κ ′〉, then I can refer to σ ′ by writing ς .σ, and I
can write ς[σ := σ ′′] to mean 〈e ′, ρ ′,σ ′′, κ ′〉. I do not use this notation
if a tuple’s definition has two of the same kind of metavariable, like a
function application (e e).

9 functions

A partial function space from A to B is denoted A⇀ B.
A finite function space from A to B is denoted A ⇀

fin
B. I sometimes

9 functions 193

use A ⇀ B when finiteness is implicit from context for notational
brevity.
If A and B are partially ordered, then A mono→ B is the function space
for monotonic functions (A mono

⇀ B for monotonic partial functions).
A monotonic function f : A mono→ B satisfies the property (say A and B
are ordered via � and v respectively)

∀a,a ′ : A.a � a ′ =⇒ f(a) v f(a ′).

An antitonic function g : A
anti→ B satisfies the property

∀a,a ′ : A.a � a ′ =⇒ g(a ′) v g(a).

An injective function f : A� B satisfies the property

∀a,a ′ : A.f(a) = f(a ′) =⇒ a = a ′

A surjective function f : A� B satisfies the property

∀b : B.∃a : A.f(a) = b

Two partially ordered types A and B can be adjoined with a Galois

connection: A
γ
←
→
α
B. The adjoint condition the functions γ : B → A

and α : A→ B are

∀a : A.a � γ(α(a))
∀b : B.α(γ(b)) v b

which is equivalent to

α(a) � b ⇐⇒ a v γ(b)

I use λ notation and bracket notation for constructing functions.

• [a 7→ b]: A map of one key/value pair. Call it f. The semantics
is f(a) = b and f(a ′) = ⊥ for a 6= a ′.

• dom(f): the domain of f. The set of points S where ∀x ∈
S.f(x) 6= ⊥.

• f[a 7→ b]: an overwriting update for a function: λa ′.a ?
= a ′ →

b, f(a ′).

• f / g: a right-biased map extension: λa.a
?
∈ dom(g)→ g(a), f(a).

• σ̂ J δ: refine σ̂ with δ: σ̂ / λâ.dδ(â)eσ̂

O A A M S U P P L E M E N TA L S

The entire definitions of each intermediate semantics were not shown
in the chapter due to the mundanity of the differences. I thus give
a reference here to the complete semantics of each other machine to
use as a basis for the proofs in the following appendix.

0.1 λIF with store-allocated results

Machine configuration space:

ς ∈ State = evt(e, ρ,σ, κ) | co (κ, v,σ) | apt`(v,a,σ, κ) | ans (σ, v)

κ ∈ Kont ::= halt | argt`(e, ρ,a,a,a) | funt`(a,a,a) | ifkt`(e, e, ρ, κ)

` ∈ Label an infinite set

v ∈ Value ::= l | o | clos (x, e, ρ)

s ∈ Storeable ::= l | o | clos (x, e, ρ) | κ

ρ ∈ Env = Var ⇀
fin

Addr

σ ∈ Store = Addr ⇀
fin
℘(Storeable)

195

196 oaam supplementals

Reduction semantics:

ev (x , ρ,σ, κ) 7−→ co (κ, v,σ) if v ∈ σ(ρ(x))
ev (lit (l), ρ,σ, κ) 7−→ co (κ, l,σ)

ev (λ x. e, ρ,σ, κ) 7−→ co (κ, clos (x, e, ρ),σ)

evt((e0 e1)
`
, ρ,σ, κ) 7−→ evt(e0, ρ,σ ′, argt`(e1, ρ,aκ))

where aκ = allockontt`(σ, κ)

σ ′ = σt [aκ 7→ {κ}]

evt(if`(e0, e1, e2), ρ,σ, κ) 7−→ evt(e0, ρ,σ ′, ifkt(e1, e2, ρ,a))

where aκ = allockontt`(σ, κ)

σ ′ = σt [aκ 7→ {κ}]

co (halt, v,σ) 7−→ ans (σ, v)

co (argt`(e, ρ,aκ), v,σ) 7−→ evt(e, ρ,σ ′, funt`(af,aκ))

where
af = alloc(ς)

σ ′ = σt [af 7→ {v}]

co (funt`(af,aκ), v,σ) 7−→ apt`(u, v, κ,σ) where κ ∈ σ(aκ),u ∈ σ(af)
co (ifkt(e0, e1, ρ,a), tt,σ) 7−→ evt(e0, ρ,σ, κ) where κ ∈ σ(a)
co (ifkt(e0, e1, ρ,a), ff,σ) 7−→ evt(e1, ρ,σ, κ) where κ ∈ σ(a)

apt`(clos (x, e, ρ), v,σ, κ) 7−→ evt
′
(e, ρ ′,σ ′, κ)

where
a = alloc(ς)

ρ ′ = ρ[x 7→ a]

σ ′ = σt [a 7→ {v}]

apt`(o, v,σ, κ) 7−→ co (κ, v ′,σ) where v ′ ∈ ∆(o, v)

inject(e) = evt0(e,⊥,⊥, halt)

reache = {ς | inject(e) 7−→∗ ς}

0.2 Store-allocated results with lazy nondeterminism

Machine configuration space:

ς ∈ State = evt(e, ρ,σ, κ) | co (κ, v,σ) | apt`(v, v,σ, κ) | ans (σ, v)

v ∈ Value ::= l | o | clos (x, e, ρ) | addr (a)

Kont, Storeable, Env and Store are defined the same as previously.

oaam supplementals 197

Reduction semantics:

ev (x , ρ,σ, κ) 7−→ co (κ, addr (ρ(x)),σ)

ev (lit (l), ρ,σ, κ) 7−→ co (κ, l,σ)

ev (λ x. e, ρ,σ, κ) 7−→ co (κ, clos (x, e, ρ),σ)

evt((e0 e1)
`
, ρ,σ, κ) 7−→ evt

′
(e0, ρ,σ ′, argt`(e1, ρ,a))

where aκ = allockontt`(σ, κ)

σ ′ = σt [aκ 7→ {κ}]

evt(if`(e0, e1, e2), ρ,σ, κ) 7−→ evt
′
(e0, ρ,σ ′, ifkt(e1, e2, ρ,a))

where aκ = allockontt`(σ, κ)

σ ′ = σt [aκ 7→ {κ}]

co (halt, v,σ) 7−→ ans (σ,u) where u ∈ force(σ, v)

co (argt`(e, ρ,a), v,σ) 7−→ evt
′
(e, ρ,σ ′, funt`(af,a))

where
af = alloc(ς)

σ ′ = σt [af 7→ force(σ, v)]

co (funt`(af,a), v,σ) 7−→ apt
′
` (u, v, κ,σ) where κ ∈ σ(a),u ∈ σ(af)

co (ifkt(e0, e1, ρ,a), tt,σ) 7−→ evt
′
(e0, ρ,σ, κ) where κ ∈ σ(a)

co (ifkt(e0, e1, ρ,a), ff,σ) 7−→ evt
′
(e1, ρ,σ, κ) where κ ∈ σ(a)

apt`(clos (x, e, ρ), v,σ, κ) 7−→ evt
′
(e, ρ ′,σ ′, κ)

where
a = alloc(ς)

ρ ′ = ρ[x 7→ a]

σ ′ = σt [a 7→ force(σ, v)]

apt`(o, v,σ, κ) 7−→ co (κ, v ′,σ) where u ∈ force(σ, v), v ′ ∈ ∆(o,u)

force(σ, addr (a)) = σ(a)

force(σ, v) = {v}

inject(e) = evt0(e,⊥,⊥, halt)

reache = {ς | inject(e) 7−→∗ ς}

0.3 Lazy nondeterminism with abstract compilation

Machine configuration space:

ς ∈ State = co (κ, v,σ) | apt`(v, v,σ, κ) | ans (σ, v)

k ∈ Compiled = (Env× Store×Kont× Time)→ State

κ ∈ Kont ::= halt | argt`(k, ρ,a) | funt`(a,a) | ifkt`(k,k, ρ,a)

v ∈ Value ::= l | o | clos (x,k, ρ) | addr (a)

Storeable ::= l | o | clos (x,k, ρ) | κ

198 oaam supplementals

Store and Env are defined the same as previously.
We write λt(args . . .).body (and without superscript) to mean λ(args . . . t).body

and kt(ρ,σ, κ) to mean k(ρ,σ, κ, t) for notational consistency.
Abstract compilation function:

J_K : Expr→ Compiled

Jx K = λ(ρ,σ, κ).co (κ, addr (ρ(x)),σ)

Jlit (l)K = λ(ρ,σ, κ).co (κ, l,σ)

Jλ x. eK = λ(ρ,σ, κ).co (κ, clos (x, JeK, ρ),σ)

J(e0 e1)
`

K = λt(ρ,σ, κ).Je0Kt
′
(ρ,σ ′, argt`(Je1K, ρ,a))

where aκ = allockontt`(σ, κ)

σ ′ = σt [aκ 7→ {κ}]

Jif`(e0, e1, e2)K = λt(ρ,σ, κ).Je0Kt
′
(ρ,σ ′, ifkt(Je1K, Je2K, ρ,a))

where aκ = allockontt`(σ, κ)

σ ′ = σt [aκ 7→ {κ}]

Reduction semantics:

co (halt, v,σ) 7−→ ans (σ,u) where u ∈ force(σ, v)

co (argt`(k, ρ,a), v,σ) 7−→ kt(ρ,σ ′, funt`(af,a))

where af = alloc(ς)

σ ′ = σt [af 7→ force(σ, v)]

co (funt`(af,a), v,σ) 7−→ apt`(u, v,σ, κ) where κ ∈ σ(a),u ∈ σ(af)
co (ifkt(k0,k1, ρ,a), tt,σ) 7−→ kt0(ρ,σ, κ) where κ ∈ σ(a)
co (ifkt(k0,k1, ρ,a), ff,σ) 7−→ kt1(ρ,σ, κ) where κ ∈ σ(a)

apt`(clos (x,k, ρ), v,σ, κ) 7−→ kt
′
(ρ ′,σ ′, κ)

where a = alloc(ς)

ρ ′ = ρ[x 7→ a]

σ ′ = σt [a 7→ force(σ, v)]

ap (o, v,σ, κ) 7−→ co (κ, v ′,σ)

where κ ∈ σ(a) and u ∈ force(σ, v), v ′ ∈ ∆(o,u)

inject(e) = JeKt0(⊥,⊥, halt)

reache = {ς | inject(e) 7−→∗ ς}

0.4 Widened abstract compilation

Machine configuration space:

ς ∈ State = co (κ, v) | apt`(v, v, κ) | ans (v)

System = (℘(State× Store) \ {∅})× ℘(State)× Store

oaam supplementals 199

nw(co (κ, v,σ)) = co (κ, v),σ

nw(apt`(u, v,σ, κ)) = apt`(u, v, κ),σ

nw(ans (σ, v)) = ans (v),σ

wn(co (κ, v),σ) = co (κ, v,σ)

wn(apt`(u, v, κ),σ) = apt`(u, v,σ, κ)

wn(ans (v),σ) = ans (σ, v)

Reduction semantics:

inject(e) = ({(ς ′,σ)}, {ς ′},σ)

where ς = JeKt0(⊥,⊥, halt)

ς ′,σ = nw(ς)

reache = {wn(ς ,σ ′) | inject(e) 7−→∗ (S, F,σ), (ς ,σ ′) ∈ S}
(S, F,σ) 7−→ (S∪ S ′, F ′,σ ′)
where I = {nw(ς∗) | ς ∈ F, wn(ς ,σ) 7−→ ς∗, nw(ς∗) /∈ S}

F ′ = {ς | ∃σ.(ς ,σ) ∈ S ′}
Σ = {σ | ∃ς .(ς ,σ) ∈ S ′}

σ ′ =
⊔
σ∈Σ

σ

S ′ = {(ς ,σ ′) | ς ∈ F ′}

0.5 Abstract compilation with store deltas

All previous machines had a trivial widening operator for the store
that would expand states without stores to states with stores, reduce
with the written semantics, and then remove the resulting stores and
join them again so that there is one store shared amongst all states.
Here we have a different widening that accumulates store changes so
that entire stores need not be joined each step - just their changes.
Machine configuration space:

ς ∈ State = co (κ, v) | apt`(v, v, κ) | ans (v)

k ∈ Compiled = (Env× Store× Store´×Kont× Time)→ (State× Store´)

κ ∈ Kont ::= halt | argt`(k, ρ,a) | funt`(a,a) | ifkt`(k,k, ρ,a)

ξ ∈ Store´ = (Addr× ℘(Storeable))∗

Storeable, Store, Env and Value are defined the same as previously.

Abstract compilation function:

200 oaam supplementals

∆J_K : Expr→ Compiled

∆Jx K = λ(ρ,σ, ξ, κ).(co (κ, addr (ρ(x)),σ),⊥)
∆Jlit (l)K = λ(ρ,σ, ξ, κ).(co (κ, l,σ),⊥)
∆Jλ x. eK = λ(ρ,σ, ξ, κ).(co (κ, clos (x,∆JeK, ρ),σ),⊥)

∆J(e0 e1)
`

K = λt(ρ,σ, ξ, κ).∆Je0Kt
′
(ρ,σ, ξ ′, argt`(∆Je1K, ρ,a))

where aκ = allockontt`(σ, κ)

σ ′ = σt [aκ 7→ {κ}]

∆Jif`(e0, e1, e2)K = λt(ρ,σ, ξ, κ).∆Je0Kt
′
(ρ,σ, ξ ′, ifkt(∆Je1K,∆Je2K, ρ,a))

where aκ = allockontt`(σ, κ)

σ ′ = σt [aκ 7→ {κ}]

Reduction semantics helper (write ς 7−→ξσ ς ′, ξ ′ to mean ((ς ,σ, ξ), (ς ′, ξ ′)) ∈
7−→):

7−→ ⊆ (State× Store× Store´)× (State× Store´)

co (halt, v) 7−→ξσ ans (u), ξ where u ∈ force(σ, v)

co (argt`(k, ρ,a), v) 7−→ξσ kt(ρ, funt`(af,a)), ξ

where af = alloc(ς)

ξ ′ = (af, force(σ, v)):ξ

co (funt`(af,a), v) 7−→ξσ apt`(u, v, κ), ξ where κ ∈ σ(a),u ∈ σ(af)

co (ifkt(k0,k1, ρ,a), tt) 7−→ξσ kt
′
0 (ρ,σ,⊥, κ), ξ where κ ∈ σ(a)

co (ifkt(k0,k1, ρ,a), ff) 7−→ξσ kt
′
1 (ρ,σ,⊥, κ), ξ where κ ∈ σ(a)

apt`(clos (x,k, ρ), v, κ) 7−→ξσ kt
′
(ρ ′,σ, ξ, κ), ξ ′

where a = alloc(ς)

ρ ′ = ρ[x 7→ a]

ξ ′ = (a, force(σ, v)):ξ

ap (o, v, κ) 7−→ξσ co (κ, v ′), ξ

where κ ∈ σ(a) and u ∈ force(σ, v), v ′ ∈ ∆(o,u)

oaam supplementals 201

Reduction semantics:

inject(e) = ({(ς ,σ)}, {ς},σ)

where ς , ξ = ∆JeKt0(⊥,⊥,⊥, halt)

σ = replay(ξ,⊥)
reache = {wn(ς ,σ ′) | inject(e) 7−→∗ (S, F,σ), (ς ,σ ′) ∈ S}

(S, F,σ) 7−→ (S∪ S ′, F ′,σ ′)
where (F ′, ξ ′) = step∗(∅, F,σ, ε)

σ ′ = replay(ξ ′,σ)

S ′ = {(c,σ ′) | c ∈ F ′}
step∗(F ′,∅, ξ) = (F ′, ξ)

step∗(F ′, {c}∪ F, ξ) = step∗(F ′ ∪ cs∗, F, ξ∗)

cs∗ = {c ′ | (c,σ, ξ) 7−→σξ (c ′, ξc)}
ξ∗ = appendall({ξc | (c,σ, ξ) 7−→σξ (c ′, ξc)})

appendall(∅) = ε
appendall({ξ}∪ Ξ) = append(ξ, appendall(Ξ))

0.6 Store deltas with timestamped store

inject(e) = (S0, {ς}, replay(ξ,⊥), 0)
where ς , ξ = ∆JeKt(⊥,⊥,⊥, halt)

S0 = λς
′.

{
0 if ς ′ = ς

ε otherwise

reachable(e) = {wn(ς ,Σ(n)) | inject(e) 7−→∗ (S, F,Σ,n ′), hd(S(ς)) = n}

System = (State→N∗)× ℘(State)× Store∗ ×N

(S, F,Σ,n) 7−→ (S ′, F∪ F ′,σ ′:Σ,n ′)

where σ = hd(Σ)

I = {(ς ′, ξ) | ς ∈ F, ς 7−→σ ς ′, ξ}
σ ′, updated? = ∀replay∆({ξ | ∃ς .(ς , ξ) ∈ I},σ, ff)

n ′ =

{
n+ 1 if updated?

n otherwise

F ′ = {ς | ∃ξ.(ς , ξ) ∈ I,n ′ 6= hd(S(ς))}

S ′ = λς .

{
n ′S(ς) if ς ∈ F ′

S(ς) otherwise

202 oaam supplementals

∀replay∆({ξ}∪ Ξ,σ, updated?) = ∀replay∆(Ξ,σ ′, updated? ∨ join?)

where σ ′, join? = replay∆(ξ,σ, ff)

∀replay∆(∅,σ, updated?) = σ, updated?

replay∆(ξ[a 7→ S],σ, join?) = replay∆(ξ,σ ′, join? ∨ join? ′)

where S ′ = St σ(a)

join? ′ = σ(a) ?
= S ′

σ ′ = σ[a 7→ S ′]

replay∆(⊥,σ, join?) = σ, join?

P U S H D O W N S U P P L E M E N TA L S

The pop function I hinted at for a memoizing CESIK∗tΞ machine is
defined here.

pop : LKont× K̂ont×KStore×Memo×Relevant→ ×Memo℘(LKont× K̂ont)

pop(ι, κ̂,Ξ,M, r) = pop∗(ι, κ̂,Ξ, r, ∅)(M)

where pop∗ is written with a variant of the State[Memo] monad to
monotonically grow M. Instead of get and put, we just have join:

State[a,b] = a→ a× b

return : b→ State[a,b]

return(S) = λM.〈M,S〉

bind : State[a,b]× (b→ State[a, c])→ State[a, c]

bind(s, f) = λM.f(b)(M ′)

where 〈M ′,b〉 = s(M)

join : Context×Relevant→ State[Memo, ()]

join(τ, r, f) = λM.〈Mt [τ 7→ {r}], ()〉

Now we can nicely write pop∗:

pop∗(ε, ε,Ξ, r,G) = return(∅)
pop∗(φ:ι, κ̂,Ξ, r,G) = return({(φ, ι, κ̂)})

pop∗(ε, τ,Ξ, r,G) = do join(τ, r)

foldM(λS, τ ′.bind(pop∗(ε, τ ′,Ξ, r,G∪G ′),
λS ′.return(S∪ S ′)),

{(φ, ι, κ̂) : (φ:ι, κ̂) ∈ Ξ(τ)},
G ′)

where G ′ = {τ ′ : (ε, τ ′) ∈ Ξ(τ)} \G

The foldM is like a
⋃

comprehension over the τ ′ ∈ G ′, but allows the
M to flow through and grow.

And the argument evaluation rule (indeed any popping rule) uses
it the following way:

〈v,σ, ι, κ̂〉,Ξ,M 7−→ 〈e, ρ ′,σ, appR(v, ρ):ι ′, κ̂ ′〉,Ξ,M ′

if appL(e, ρ ′), ι ′, κ̂ ′ ∈ K
where 〈M ′,K〉 = pop(ι, κ̂,Ξ,M, 〈v,σ〉)

203

204 pushdown supplementals

1 context congruence with invΞ

invΞ(epgm,⊥)

invΞ(epgm,Ξ) ε ∈ K =⇒ inject(epgm) 7−→∗CESKt
extend(τ, ε)

∀φ:κ̂c ∈ K, κ.A(τ, κ) =⇒ extend(τ, κ) 7−→∗CESKt
extend(τ,φ:κ)

invΞ(epgm,Ξ[τ 7→ K])

P R O O F S F O R O A A M

0.1 Soundness of lazy-nondeterminism

α(ς) = ς

γ(evt(e, ρ,σ, κ)) = {evt(e, ρ,σ, κ)}

γ(co (κ, v,σ)) = {co (κ, v ′,σ) | v ′ ∈ force(σ, v)}

γ(apt`(v,u,σ)) = {apt`(v
′,u ′,σ) | v ′ ∈ force(σ, v),u ′ ∈ force(σ,u)}

γ(ans (σ, v)) = {ans (σ, v ′) | v ′ ∈ force(σ, v)sto, force(v)}

α∗(C) = {α(ς) | ς ∈ C}

γ∗(A) =
⋃
ς̂∈A

γ(ς̂)

dom(σ) = dom(σ ′) ∀a.σ(a) ⊆ σ ′(a)
σ v σ ′

σ v σ ′

evt(e, ρ,σ, κ) v evt(e, ρ,σ ′, κ)

force(σ, v) ⊆ force(σ ′, v ′) σ v σ ′

co (κ, v,σ) v co (κ, v ′,σ ′)

force(σ, v) ⊆ force(σ ′, v ′) force(σ,u) ⊆ force(σ ′,u ′) σ v σ ′

apt`(v,u,σ) v apt`(v
′,u ′,σ ′)

force(σ, v) ⊆ force(σ ′, v ′) σ v σ ′

ans (σ, v) v ans (σ ′, v ′)

∀ς̂ ∈ S, ∃ς̂ ′ ∈ S ′.ς̂ v ς̂ ′

S v S ′

By definitions of α,γ, force, γ∗ ◦ α∗ = 1C. Also α∗ ◦ γ∗ 6 1A is
straightforward to prove. This forms a Galois connection.

theorem 3 If ς 7−→ ς ′ and α(ς) v ς̂ then ∃ς̂ ′.ς̂ 7−→ ς̂ ′.

Proof. By assumption, γ∗(α∗({ς})) v γ∗{ς̂}. By the above property, and
definition of γ∗, ς ∈ γ(ς̂). Since α does not introduce addr () values,
most cases follow by definition.

By cases on ς 7−→ ς ′:

Case ev (x , ρ,σ, κ) 7−→ co (κ, v,σ).

where v ∈ σ(ρ(x))
By assumption, ς̂ ≡ ev (x , ρ,σ ′, κ) such that σ v σ ′.

(1) Let ς̂ ′ = co (κ, addr (ρ(x)),σ ′)

(2) {ς ′} v γ(ς̂ ′) by def. γ

(3) α(ς ′) v ς̂ ′ by def. α, α∗ ◦ γ∗ 6 1A

205

206 proofs for oaam

Case ev (lit (l), ρ,σ, κ) 7−→ co (κ, l,σ).

By assumption, ς̂ ≡ ev (x , ρ,σ ′, κ) such that σ v σ ′. Let ς̂ ′ =
co (κ, l,σ ′). Conclusion holds by definition of α,v, 7−→.

Case ev (λ x. e, ρ,σ, κ) 7−→ co (κ, clos (x, e, ρ),σ).

By assumption, ς̂ ≡ ev (x , ρ,σ ′, κ) such that σ v σ ′. Let ς̂ ′ =
co (κ, clos (x, e, ρ),σ ′). Conclusion holds by definition of α,v
, 7−→.

Case evt((e0 e1)
`
, ρ,σ, κ) 7−→ evt(e0, ρ,σ ′, argt`(e1, ρ,a)).

where aκ = allockontt`(σ, κ) σ ′ = σt [aκ 7→ {κ}]

By assumption, ς̂ ≡ ev (x , ρ,σ∗, κ) such that σ v σ∗. Let
ς̂ ′ = evt(e0, ρ,σ∗1, argt`(e1, ρ,a)) where σ∗1 = σ∗[aκ 7→ {κ}]. Con-
clusion holds by definition of α,v, 7−→.

Case evt(if`(e0, e1, e2), ρ,σ, κ) 7−→ evt(e0, ρ,σ ′, ifkt(e1, e2, ρ,a)).

where aκ = allockontt`(σ, κ) σ ′ = σt [aκ 7→ {κ}]

By assumption, ς̂ ≡ ev (if`(e0, e1, e2), ρ,σ∗, ifkt(e1, e2, ρ,a))
such that σ v σ∗. Let ς̂ ′ = evt(e0, ρ,σ∗1, ifkt(e1, e2, ρ,a)) where
σ∗1 = σ

∗[aκ 7→ {κ}]. Conclusion holds by definition of α,v, 7−→.

Case co (halt, v,σ) 7−→ ans (σ, v).

By assumption, ς̂ ≡ co (halt, v ′,σ∗) where σ v σ∗ and force(σ, v) ⊆
force(σ∗, v ′).

By definition of force,v, v ∈ force(σ∗, v ′). Let ς̂ ′ = ans (σ∗, v).
Conclusion holds by definition of 7−→, force.

Case co (argt`(e, ρ,a), v,σ) 7−→ evt(e, ρ,σ ′, funt`(af,a)).

where af = alloc(ς),σ ′ = σt [af 7→ force(σ, v)].

Case ς̂ ≡ co (argt`(e, ρ,a), addr (c),σ∗).

where σ v σ∗

Let ς̂ ′ = evt(e, ρ,σ∗, funt`(af,a)) where af = alloc(ς),σ∗ =
σt [af 7→ addr (c)]. Conclusion holds by definition of α,v
, 7−→.

Otherwise.

ς̂ ≡ co (argt`(e, ρ,a), v,σ∗) where σ v σ∗ and v 6≡ addr (c).

Let ς̂ ′ = evt(e, ρ,σ∗1, funt`(af,a)) where af = alloc(ς),σ∗1 =

σ∗ t [af 7→ force(σ, v)] Conclusion holds by definition of
α,v, 7−→.

Case co (funt`(af,a), v,σ) 7−→ apt`(u, v, κ,σ).

where κ ∈ σ(a),u ∈ σ(af)

proofs for oaam 207

By assumption, ς̂ ≡ co (funt`(af,a), v ′,σ∗) where σ v σ∗ and
force(σ, v) ⊆ force(σ∗, v ′).

By definition of v, force, κ ∈ σ∗(a) and u ∈ σ∗(af). Thus letting
ς̂ ′ = apt`(u, v, κ,σ∗). Conclusion holds by definition of α, 7−→.

Case co (ifkt(e0, e1, ρ,a), tt,σ) 7−→ evt(e0, ρ,σ, κ).

where κ ∈ σ(a)

By assumption, ς̂ ≡ co (ifkt(e0, e1, ρ,a), tt,σ∗) where σ v σ∗.

Let ς̂ ′ = evt(e0, ρ,σ∗, κ). Conclusion holds by definition of
α, 7−→.

Case co (ifkt(e0, e1, ρ,a), ff,σ) 7−→ evt(e1, ρ,σ, κ).

where κ ∈ σ(a)

By assumption, ς̂ ≡ co (ifkt(e0, e1, ρ,a), ff,σ∗) where σ v σ∗.

Let ς̂ ′ = evt(e1, ρ,σ∗, κ). Conclusion holds by definition of
α, 7−→.

Case apt`(clos (x, e, ρ), v,σ, κ) 7−→ evt
′
(e, ρ ′,σ ′, κ).

where a = alloc(ς), ρ ′ = ρ[x 7→ a],σ ′ = σt [a 7→ {v}]

By assumption, ς̂ ≡ apt`(clos (x, e, ρ), v ′,σ∗, κ) where σ v σ∗

and force(σ, v) ⊆ force(σ∗, v ′).

Let ς̂ ′ = evt
′
(e, ρ ′,σ∗1, κ) where ρ ′ = ρ[x 7→ a],σ∗1 = σ∗ t [a 7→

force(σ, v ′)]. Conclusion holds by definition of α,v, 7−→.

Case apt`(o, v,σ, κ) 7−→ co (κ, v ′,σ).

where v ′ ∈ ∆(o, v)

By assumption, ς̂ ≡ apt`(o, v∗,σ∗, κ) where σ v σ∗ and force(σ, v) ⊆
force(σ∗, v∗). By definition of force, v ∈ force(σ∗, v ′).

Let ς̂ ′ = co (κ, v ′,σ∗). Conclusion holds by definition of α, 7−→.

0.2 Semantic equivalence with abstract compilation

We show that in the presence of abstract compilation, even though
there are fewer represented states in the reduction relation, that there
is a bisimulation between the two. Particularly, the compiled seman-
tics is a WEB refinement (defined in pages 57-64 of Manolios [59])
of the non-compiled semantics. We equate states that “commit” to
non-ev () states.

To differentiate the two states spaces, denote the machine config-
uration space from the abstractly-compiled machine as JStateK. We
additionally denote the reduction relation as J7−→K.

208 proofs for oaam

commit(evt(e, ρ,σ, κ)) = commitev(t, ρ,σ, κ, e)

commit(ς) = ς otherwise

commitev(t, ρ,σ, κ, x) = co (κ, addr (ρ(x)),σ)

commitev(t, ρ,σ, κ, lit (l)) = co (κ, lit (l),σ)

commitev(t, ρ,σ, κ, λ x, e, ρ.) = co (κ, clos (x, e, ρ),σ)

commitev(t, ρ,σ, κ, (e0 e1)
`

) = commitev(t, ρ,σ ′, argt`(e1, ρ,a), e0)

where a = allockontt`(σ, κ)

σ ′ = σt [a 7→ {κ}]

commitev(t, ρ,σ, κ, if`(e0, e1, e2)) = commitev(t, ρ,σ ′, ifkt`(e1, e2, ρ,a), e0)

where a = allockontt`(σ, κ)

σ ′ = σt [a 7→ {κ}]

Next, the refinement map from non-compiled to compiled states.

r : State→ JStateK

r(evt(e, ρ,σ, κ)) = r(commit(evt(e, ρ,σ, κ)))

r(co (κ, v,σ)) = co (r(κ), r(v), r(σ))

r(apt`(u, v,σ, κ)) = apt`(r(u), r(v), r(σ), r(κ))

r(ans (σ, v)) = ans (r(σ), r(v))

r(σ) = λa.{r(v) | v ∈ σ(a)}

r(halt) = halt

r(argt`(e, ρ,a)) = argt`(JeK, ρ,a)

r(funt`(af,a)) = funt`(af,a)

r(ifkt(e0, e1, ρ,a)) = ifkt(Je0K, Je1K, ρ,a)

r(o) = o

r(l) = l

r(addr (a)) = addr (a)

r(clos (x, e, ρ)) = clos (x, JeK, ρ)

r terminates because the non-structurally descreasing call case is guar-
anteed to not happen unless on a structurally smaller counterpart.
This is because commit never returns an ev () state.

Next we relate states across the different machines with an equiva-
lence relation B on the two state spaces S = State ∪ JStateK, such that
∀ς ∈ State.sBr(s). Let B be the reflexive, symmetric closure of B∗:

r(s) = s ′

sB∗s ′

Finally, we show that B is a WEB on the transition system 〈S,⇒〉
where⇒= 7−→∪ J7−→K.

proofs for oaam 209

Let 〈W,l〉 be the well-ordered set of expressions (ordered struc-
turally) with a bottom element ⊥.

erankt(evt(e, ρ,σ, κ)) = e

erankt(ς) = ⊥ otherwise

erankl(s, s ′) = 0 Unnecessary

We need one lemma:

lemma 8 [compile/commit] For all t, e, ρ,σ, κ, JeKt(ρ, r(σ), r(κ)) =
r(evt(e, ρ,σ, κ)).

Proof. By induction on e.

Case Base: x .

By definitions of J_K, r, commit.

Case Base: lit (l).

By definitions of J_K, r, commit.

Case Induction step: λ x. e ′.

By definitions of J_K, r, commit.

Case Induction step: (e0 e1)
`
.

By IH, Je0Kt(ρ, r(σ ′), r(κ ′)) = r(evt(e0)ρ,σ ′, κ ′) where κ ′ =

argt`(e1, ρ,a) and aκ = allockontt`(σ, κ) σ ′ = σt [aκ 7→ {κ}] Thus
holds by definitions of r, commit, J_K.

Case Induction step: if (e0, e1, e2).

By IH, Je0Kt(ρ, r(σ ′), r(κ ′)) = r(evt(e0)ρ,σ ′, κ ′) where κ ′ =

ifkt`(e1, e2, ρ,a) and aκ = allockontt`(σ, κ) σ ′ = σ t [aκ 7→ {κ}]

Thus holds by definitions of r, commit, J_K.

theorem 9 B is a WEB on the transition system 〈S,⇒〉.

Proof. Let s,u,w ∈ S be arbitrary such that sBw and s⇒ u. If w = s,
the first case of WEB trivially holds with witness u. We assumew 6= s.
Thus w = r(s). By cases on s⇒ u:

Case ev (x , ρ,σ, κ) 7−→ co (κ, addr (ρ(x)),σ).

Since w = r(s), w = r(u) by definition of r. The second case of
WEB holds by definition of erankt, l and case analysis on w.

Case ev (lit (l), ρ,σ, κ) 7−→ co (κ, l,σ).

Since w = r(s), w = r(u) by definition of r. The second case of
WEB holds by definition of erankt, l and case analysis on w.

210 proofs for oaam

Case ev (λ x. e, ρ,σ, κ) 7−→ co (κ, clos (x, e, ρ),σ).

Since w = r(s), w = r(u) by definition of r. The second case of
WEB holds by definition of erankt, l and case analysis on w.

Case evt((e0 e1)
`
, ρ,σ, κ) 7−→ evt(e0, ρ,σ ′, argt`(e1, ρ,a)).

where a = allockontt`(σ, κ) σ ′ = σt [a 7→ {κ}]

By definition of commit, r(u) = w, thus uBw. By definition of l,
erankt(u) < erankt(s). Thus the second case of WEB holds.

Case evt(if`(e0, e1, e2), ρ,σ, κ) 7−→ evt(e0, ρ,σ ′, ifkt(e1, e2, ρ,a)).

where a = allockontt`(σ, κ) σ ′ = σt [a 7→ {κ}]

By definition of commit, r(u) = r(s) = w. By definition of l,
erankt(u)l erankt(s). Thus the second case of WEB holds.

Case co (halt, v,σ) 7−→ ans (σ,u).

where u ∈ force(σ, v)

By definition of ⇒, J7−→K, w ⇒ r(u), satisfying the first case of
WEB.

Case co (argt`(e, ρ,a), v,σ) 7−→ evt(e, ρ,σ ′, funt`(af,a)).

where af = alloc(ς),σ ′ = σt [af 7→ force(σ, v)

By definition of ⇒, J7−→K, w ⇒ JeKt(ρ, r(σ ′), r(funt`(af,a))). By
the compile/commit lemma, w ⇒ r(u). Thus the first case of
WEB holds with witness r(u).

Case co (funt`(af,a), v,σ) 7−→ apt`(u, v, κ,σ).

where κ ∈ σ(a),u ∈ σ(af)

By definition of J7−→K, w J7−→K r(u), satisfying the first case of
WEB.

Case co (ifkt(e0, e1, ρ,a), tt,σ) 7−→ evt(e0, ρ,σ, κ).

where κ ∈ σ(a)

By definition of ⇒, J7−→K, w ⇒ Je0Kt(ρ, r(σ), r(κ)). By the com-
pile/commit lemma, w ⇒ r(u). Thus the first case of WEB
holds with witness r(u).

Case co (ifkt(e0, e1, ρ,a), ff,σ) 7−→ evt(e1, ρ,σ, κ).

where κ ∈ σ(a)

By definition of ⇒, J7−→K, w ⇒ Je0Kt(ρ, r(σ), r(κ)). By the com-
pile/commit lemma, w ⇒ r(u). Thus the first case of WEB
holds with witness r(u).

Case apt`(clos (x, e, ρ), v,σ, κ) 7−→ evt
′
(e, ρ ′,σ ′, κ).

where a = alloc(ς), ρ ′ = ρ[x 7→ a],σ ′ = σt [a 7→ force(σ, v)]

proofs for oaam 211

By definition of⇒, J7−→K, w⇒ JeKt ′(ρ ′, r(σ ′), r(κ)). By the com-
pile/commit lemma, w ⇒ r(u). Thus the first case of WEB
holds with witness r(u).

Case apt`(o, v,σ, κ) 7−→ co (κ, v ′,σ).

where u ∈ force(σ, v), v ′ ∈ ∆(o,u)

By definition of J7−→K, w J7−→K r(u), satisfying the first case of
WEB.

Case s J7−→K u.

Must be the case that s = w, thus the first case of WEB holds.

0.3 Soundness of widened abstract compilation

prep(S, F, σ̂) = S∪ {(ς̂ , σ̂) | ς̂ ∈ F}

σ̂ v σ̂ ′

(ς̂ , σ̂) v (ς̂ , σ̂ ′)

prep(S, F, σ̂) v prep(S ′, F ′, σ̂ ′)

(S, F, σ̂) v (S ′, F ′, σ̂ ′)

α(ς) = ({(ς̂ , σ̂)}, {ς̂}, σ̂)

where ς̂ , σ̂ = nw(ς)

γ((S, F, σ̂)) = {wn(ς̂ ,σ) | (ς̂ , σ̂ ′) ∈ prep(S, F, σ̂),σ ∈ γ(σ̂ ′)}
γ(σ̂) = {R ′ | R ′ ⊆ R,R ′ functional, dom(R ′) = dom(σ̂)}

where R = {(a, ŝ) | a ∈ dom(σ̂), ŝ ⊆ σ̂(a)}
α∗(C) = {α(ς) | ς ∈ C}

γ∗(A) =
⋃
ς̂∈A

γ(ς̂)

Lemma 41. γ∗ ◦α∗ > 1C

Proof. This is immediate if σ̂ ∈ γ(σ̂), which is true, since σ̂(a) ⊆
σ̂(a).

Lemma 42. α∗ ◦ γ∗ 6 1A

Proof. LetA ⊆ System be arbitrary. It suffices to show that α∗(γ∗(A)) v
A. Let (S, F, σ̂) ∈ A be arbitary. Let (ς̂ , σ̂) ∈ S be arbitrary. By defi-
nition of γ, σ̂ ∈ γ(σ̂). Thus wn(ς̂ , σ̂) ∈ γ∗(A). By definition of α∗,α,
({(ς̂ , σ̂)}, {ς̂}, σ̂) ∈ α∗(γ∗(A)). By definition of prep,v, ({(ς̂ , σ̂)}, {ς̂}, σ̂) v
(S, F, σ̂). Thus since (S, F, σ̂) was arbitrary, α∗(γ∗(A)) v A.

Theorem 43. If ς J7−→K ς ′ and α(ς) v (S, F, σ̂) then there exist S ′, F ′, σ̂ ′

such that (S, F, σ̂) 7−→ (S ′, F ′, σ̂ ′) and α(ς ′) v (S ′, F ′, σ̂ ′)

212 proofs for oaam

Proof. By definition of α,v, there exists a ς̂ ∈ F such that, with
ς̂∗, σ̂∗ = nw(ς), ς̂ = ς̂∗ and σ̂∗ v σ̂.

Thus, by definition of 7−→, nw, wn, prep,v (call the result (S ′, F ′, σ̂ ′)),
letting ς̂∗1 , σ̂∗1 = nw(ς ′), σ̂∗1 v σ̂ ′ and {(ς̂∗1 , σ̂ ′)} v prep(S ′, F ′, σ̂ ′). Thus
α(ς ′) v (S ′, F ′, σ̂ ′).

0.4 Semantic equivalence with locally log-based store deltas

Here we show extensional equality of the relations. We will use 7−→σξ
for the store delta semantics and ∆J_K for its compilation function.

Let ≡⊆ Expr be the reflexive, transitive, symmetric closure of ≡∗
with structural lifting where non-Expr elements are compared with
equality, and that lifted to functions Addr→ ℘(Storeable).

∆JeK ≡∗ JeK

Lemma 44 (Compile store independence). Let JeKt(ρ,σ, κ) = wn(ς̂ ,σ ′).
∃ξ.σ ′ = replay(ξ,σ).

Proof. By induction on e

Case Base x .

Witness ε

Case Base lit (l).

Witness ε

Case Induction step λ x. e.

Witness ε

Case Induction step (e0 e1) .

Let a = allockontt`(σ, κ). Let σ ′′ = σ t [a 7→ {κ}]. Let κ ′ =
argt`(Je1K, ρ,a). By IH with e0, t ′,σ ′′, κ ′, ∃ξ.σ ′ = replay(ξ,σ ′′).
Thus the witness is (a, {κ}):ξ by definitions of J_K, replay.

Case Induction step if (e0, e1, e2).

Let a = allockontt`(σ, κ). Let σ ′′ = σ t [a 7→ {κ}]. Let κ ′ =
ifkt(Je1K, Je2K, ρ,a). By IH with e0, t ′,σ ′′, κ ′, ∃ξ.σ ′ = replay(ξ,σ ′′).
Thus the witness is (a, {κ}):ξ by definitions of J_K, replay.

We need an additional property on allockont such that if σ ≡ σ ′

and κ ≡ κ ′, then allockontt`(σ, κ) = allockontt`(σ ′, κ ′), which is a very
reasonable assumption.
Lemma 45 (replay and append). replay(ξ, replay(ξ ′,σ)) = replay(append(ξ, ξ ′),σ)

Proof. By induction on ξ.

proofs for oaam 213

Lemma 46 (Compile coherence). For all e, t, ρ,σ, ξ, κ,σ∗, κ∗, ξ∗,
let (ς̂ , ξ ′) = ∆JeKt(ρ,σ, ξ, κ),
let nw(ς̂ ′,σ∗

′
) = JeKt(ρ,σ∗, κ∗).

If σ ≡ σ∗, ξ ≡ ξ∗, and κ ≡ κ∗ then ς̂ ′ ≡ ς̂ and there exists an ξ ′′ such that
replay(ξ ′′, replay(ξ∗,σ∗)) ≡ replay(ξ ′,σ).

Proof. By induction on e

Case Base x .

By definitions of ∆J_K, J_K, replay, nw, witness is ε.

Case Base lit (l).

By definitions of ∆J_K, J_K, replay, nw, witness is ε.

Case Induction step λ x. e.

By definitions of ∆J_K, J_K, replay, nw, witness is ε.

Case Induction step (e0 e1) .

Let κ ′ = argt`(∆Je1K, ρ,a) By definition of ∆J_K, Let ∆Je0Kt
′
(ρ,σ, ξ ′1, κ ′) =

(ς̂ , ξ ′) where a = allockontt`(σ, κ) ξ ′1 = (a, {κ}):ξ Let κ∗
′
=

argt`(Je1K, ρ,a). By definition of J_K, Je0Kt
′
(ρ,σ∗1, κ∗

′
) = wn(ς̂ ′,σ∗

′
)

where σ∗1 = σ
∗ t [a 7→ {κ∗}].

By lemma 44, there exists a ξ∗1 such that σ∗
′
= replay(ξ∗1,σ∗1)

Let ξ∗
′
= (a, {κ∗}):ξ∗1. By definition of replay, σ∗

′
= replay(ξ∗

′
,σ∗).

By IH, with e0, t ′, ρ,σ, ξ ′1, κ ′,σ∗, κ∗
′
, ξ∗

′
, ς̂ ≡ ς̂ ′ and there exists

an ξ ′′1 such that replay(ξ ′′, replay(ξ∗
′
,σ∗)) ≡ replay(ξ ′,σ). Thus

the witness is append(ξ ′′1 , (a, {κ∗}):ε) by lemma 45 and associa-
tivity of append.

Case Induction step if (e0, e1, e2).

Similar to above case.

Theorem 47. If S ≡ S∗, F ≡ F∗,σ ≡ σ∗, then (S, F,σ) 7−→ (S ′, F ′,σ ′) iff
∃S∗1, F∗1,σ∗1.S ′ ≡ S∗1∧ F ′ ≡ F∗1∧ σ ′ ≡ σ∗1∧ (S∗, F∗,σ∗) 7−→σξ (S∗1, F∗1,σ∗1)

Proof. By definitions of 7−→, 7−→σξ, replay, appendall, commutativity and
associativity of t, and the previous lemma.

0.5 Semantic equivalence of log-based updates to a timestamped store

Because the store is monotonically increasing, we know that v forms
a total order on stores in the system. We use this information to sort
and index the stores. Call the timestamped reduction relation 7−→n.

214 proofs for oaam

α((S, F,σ)) = (α(S,Σ), F,Σ, |Σ|− 1)

where Σ = λn.sortedn
sorted = sort({σ | (_,σ) ∈ prep(S, F,σ)},v)
α(S,Σ) = {(ς , map((λσ.|Σ|− indexof (Σ,σ) − 1),

sort({σ | (ς ,σ) ∈ S},w))) | (ς , _,∈)S}
γ((S, F,Σ,n)) = (γ(S,Σ), F, hd(Σ))

γ(S,Σ) = {(ς ,Σ(`i)) | S(ς) = `, 0 6 i < |`|}

σΞ ∈ StoreΞ = Addr→ ValStack

V ∈ ValStack = (Time× ℘(Storeable))∗

ασ(ε) = ασ(λa.∅) = λa.ε

ασ(σ) = λa.(0,σ(a))

ασ(σσ
′ . . .) = merge(σ,ασ(σ ′ . . .))

merge(σ,σΞ) = λa.

{
(t+ 1, vst σ(a)):σΞ(a) if vs 6= σ(a)
σΞ(a) otherwise

where t = size(σΞ)

vs = π1(hd(σΞ(a)))

size(⊥) = −1

size(σΞ) = max{t | σΞ(a) ≡ (t, vs):V}

γσ(σΞ) = snapshot(σΞ,n) . . .n where n = size(σΞ) down to 0

snapshot(σΞ,n) = λa.firstunder(σΞ(a),n)

firstunder(ε,n) = ∅

firstunder((t, vs):V ,n) =

{
vs if t 6 n

firstunder(V ,n) otherwise

Of course we rely on the timestamps being sequential from 0 to n
(including each number in the range), so we add a well-formedness
condition on StoreΞ:

wfΞ(σΞ) = (∀a.ordered(σΞ(a)))∧ ∀0 6 i 6 size(σΞ).∃a, j.π0(σΞ(a)j) = i

ordered(ε)

vs 6= ∅
ordered((t, vs))

ordered((t, vs):V) t ′ > t vs ′ = vs

ordered((t ′, vs ′):(t, vs):V)

Additionally, the stack of stores we deal with must be in order,
different, and greatest to least.

wf (ε) wf (σ)

wf (σ:Σ) σ ′ = σ

wf (σ ′:σ:Σ)

proofs for oaam 215

Lemma 48 (Snapshot order). If wfΞ(σΞ) then for all 1 6 n 6 size(σΞ),
snapshot(σΞ,n) = snapshot(σΞ,n− 1).

Proof. By cases on n.

Case 0.

Vacuously true

Case n+ 1.

Let a, j be the witnesses of the second well-formedness condi-
tion with i = n. By definition of ordered, either j = |σΞ(a)|− 1

and thus π1(σΞ(a)0) = snapshot(σΞ,n− 1)(a) = ∅, or the third
rule of ordered applies and = holds outright.

Lemma 49. If wfΞ(σΞ) and σ w snapshot(σΞ, size(σΞ)) thenwfΞ(merge(σ,σΞ))

Lemma 50 (Wellformedness (a)). γσ : {σΞ | σΞ ∈ StoreΞ, wfΞ(σΞ)} →
{Σ | Σ ∈ Store∗, wf (Σ)}

Proof. Let σΞ be arbitrary such that wfΞ(σΞ). By lemma 48, and
straightforward induction on size(σΞ).

Lemma 51 (Wellformedness (b)).

ασ : {Σ ∈ Store∗ : wf (Σ)}→ {σΞ ∈ StoreΞ : wfΞ(σΞ)}

Proof. Let Σ be arbitrary such that wf (Σ). By induction on Σ:

Case Base ε or λa.∅.

Vacuously true by definitions of ασ, ordered, size and wfΞ.

Case Base σ = λa.∅.

By definitons of ασ, ordered, size for first condition. Second con-
dition witnesses are a such that σ(a) 6= ∅ (exists by assumption)
and 0.

Case Induction step σ:σ ′:Σ ′ such that σ = σ ′.

By IH, wfΞ(ασ(σ
′:Σ ′)). Let a be arbitrary.

Case a is such that σ(a) = σ ′(a).

Let σ ′Ξ = ασ(σ
′:Σ). By definitions of ασ, merge, ασ(Σ)(a) =

(t+ 1,σ(a)):σ ′Ξ, where t = size(σ ′Ξ). By definition of ordered
and wfXi, ordered(ασ(Σ)(a)). For the second condition, i 6
t is handled by IH. Otherwise, the witnesses are a and 0

(and a must exist by assumption).

216 proofs for oaam

Otherwise.

First condition holds by IH. Second by previous reasoning.

prop(S,σ) = totally-ordered(Σ,v)∧ σ an upper bound of Σ

where Σ = {σ | (_,σ) ∈ S}
prop∗(S,Σ,n) = (∀ς , i.0 6 i < |S(ς)| =⇒ 0 6 Σ(ς)i < |Σ|)∧

(∀i.0 6 i < |Σ|− 1 =⇒ Σ(i) v Σ(i+ 1))∧
n = |Σ|− 1

Lemma 52 (Monotone store collection). If prop(S,σ) and (S, F,σ) 7−→
(S ′, F ′,msto ′) then prop(S ′,σ ′)

Proof. Since ∀Ξ,σ.∀replay(Ξ,σ) w σ, this is trivial.

Lemma 53 (Monotone store timestamps). If prop∗(S,Σ,n) and (S, F,Σ,n) 7−→
(S ′, F ′,Σ ′,n ′) then prop∗(S ′,Σ ′,n ′)

Proof. Since ∀Ξ,σ.let σ ′, updated? = ∀replay∆(Ξ,σ) in σ ′ w σ, this is
trivial.

Lemma 54 (Change is change). For all ξ,σ, join?,
let 〈σ ′, join? ′〉 = replay∆(ξ,σ, join?) for
join? ∨ (join? ′ ⇐⇒ σ 6= σ ′) and σ ′ = replay(ξ,σ).

Proof. By induction on ξ.

Case Base ⊥.

By definition of replay∆, replay, σ = σ ′ = replay(⊥,σ) and join? =

join? ′.

Case Induction step ξ ′[a 7→ ŝ].

Let replay∆(ξ ′,σ∗, join? ∨ join?∗) = σ∗1, join?∗1 where ŝ ′ = ŝ t
σ(a), σ∗ = σ[a 7→ ŝ ′], join?∗ = ŝ ′

?
= σ(a). If join?∗, then σ∗1 6= σ

and join?∗1 because replay∆ monotonically increases σ and join?.
Otherwise, by IH, if join?, then join?∗1; otherwise, σ∗1 6= σ∗ ⇐⇒
join?∗1. Also by IH, σ∗1 = replay(ξ ′,σ∗). Thus by definition of
replay, σ ′ = replay(ξ,σ).

Lemma 55 (Change all is change). For all Ξ finite,σ, updated?,
let 〈σ ′, updated? ′〉 = ∀replay∆(Ξ,σ, updated?) for
updated? ∨ (updated? ′ ⇐⇒ σ 6= σ ′) and σ ′ = ∀replay(Ξ,σ)

Proof. By induction on Ξ.

proofs for oaam 217

Case Base ∅.

By definition of replay∆, replay, σ = σ ′ = replay(∅,σ) and updated? =

updated? ′.

Case Induction step {ξ}∪ Ξ ′.

Let ∀replay∆(Ξ ′,σ∗, updated? ∨ updated?∗) = σ∗1, updated?∗1 where
replay∆(ξ,σ, updated?) = σ∗, updated?∗. By the previous lemma,
updated? ∨ (updated?∗ ⇐⇒ σ 6= σ∗) and σ∗ = replay(ξ,σ)..
If updated?∗ then σ 6= msto∗1 and updated?∗1 because ∀replay∆
monotonically increases σ and updated?. Otherwise, by IH, if
updated?, then updated?∗1; otherwise σ∗1 6= σ∗ ⇐⇒ updated?∗1.
Also by IH, σ∗1 = ∀replay(Ξ ′,σ∗). Thus, by definition of ∀replay,
σ ′ = ∀replay(Ξ,σ).

Theorem 56. If (S, F,σ) 7−→ (S ′, F ′,σ ′) and prop(S,σ) and α((S, F,σ)) v
(S∗, F,Σ,n) then there exist S∗1,Σ ′,n ′ such that (S∗, F,Σ,n) 7−→n (S∗1, F ′,Σ ′,n ′)
and α((S ′, F ′,σ ′)) v (S∗1, F ′,Σ ′,n ′).

Proof. By definition of α, and lemma 52, Σ(n) = σ. By definitions of
7−→n, 7−→, α and the previous lemma, σ ′ = Σ ′(n ′). By definitions of
7−→n, 7−→, α, and the previous statement, α(S ′) = S∗1. By definition of
α and lemma 52, (S∗, F,Σ,n) 7−→n (S∗1, F ′,Σ ′,n ′) and α((S ′, F ′,σ ′)) v
(S∗1, F ′,Σ ′,n ′).

Theorem 57. If (S, F,Σ,n) 7−→n (S ′, F ′,Σ ′,n ′) and γ((S, F,Σ,n)) v (S∗, F,σ)
then there exist S∗1,σ ′ such that (S∗, F,σ) 7−→ (S∗1, F ′,σ ′) and γ((S ′, F ′,Σ ′,n ′)) v
(S∗1, F ′,σ ′).

Proof. By definition of γ, and lemma 53, Σ(n) = σ. By definitions of
7−→n, 7−→, γ and the previous lemma, σ ′ = Σ ′(n ′). By definitions of
7−→n, 7−→, γ, and the previous statement, γ(S ′,Σ ′) = S∗1. By defini-
tion of γ and lemma 53, (S∗, F,σ) 7−→ (S∗1, F ′,σ ′) and γ((S ′, F ′,Σ ′,n ′)) v
(S∗1, F ′,σ ′).

P R O O F S F O R P U S H D O W N

1 proofs for Section 4 .2

htκ(κ, κ)

htκ(κ, κ ′)

htκ(φ:κ, κ ′)

htκ(κ, κ ′)

htς̂((〈e, ρ̂, κ〉,σ, t), κ ′)

ht(ε, κ)

ht(πς , κ) ς 7−→ ς ′ htς̂(ς ′, κ)

ht(πςς ′, κ)

rtκ(κ, κ, κ ′) = κ ′

rtκ(φ:κ, κ ′, κ ′′) = φ:rtκ(κ, κ ′, κ ′′)

rtς̂((〈e, ρ̂, κ〉,σ, t), κ ′, κ ′′) = 〈e, ρ̂, rtκ(κ, κ ′, κ ′′)〉,σ, t

rt(ε, κ, κ ′′) = ε

rt(πς , κ, κ ′) = rt(π, κ, κ ′)rtς̂(ς , κ, κ ′)

Lemma 58 (htκ implies rtκ defined). ∀κ, κ ′. htκ(κ, κ ′) =⇒ ∀κ ′′ ∈
Kont. ∃κ ′′′.rtκ(κ, κ ′, κ ′′) = κ ′′′

Proof. By induction on κ:

Case Base: ε.

By inversion on htκ(κ, κ ′), κ ′ = ε, so rtκ(κ, κ ′, κ ′′) = κ ′′.

Case Induction step: φ:κpre.

By cases on htκ(κ, κ ′):

Case κ = κ ′.

By definition rtκ(κ, κ ′, κ ′′) = κ ′′

Case htκ(κpre, κ ′).

By let κIH be the witness from the induction hypothesis. By
definition rtκ(κ, κ ′, κ ′′) = φ:κIH.

Lemma 59 (ht implies rt defined). ∀π,∈ CESKt
∗, κ, κ ′ ∈ Kont. ht(π, κ) =⇒

∃π ′.rt(π, κ, κ ′) = π ′

Proof. By induction on π and application of Lemma 58.

219

220 proofs for pushdown

correctness : theorem 14 For all expressions epgm, if for all κ̂
such that ς .κ ∈ unrollΞ(κ̂), both tickCESKt(ς) = tickCESK∗tΞ(ς{κ := κ̂}) and
allocCESKt(ς) = allocCESK∗tΞ(ς{κ := κ̂}), then

• Soundness: if ς ,σ, t 7−→CESKt ς
′,σ ′, t ′ and ς .κ ∈ unrollΞ(κ̂), then

there are Ξ ′, κ̂ ′ such that ς{κ := κ̂},σ, t,Ξ 7−→CESK∗tΞ ς ′{κ := κ̂ ′},σ ′,Ξ ′, t ′

and ς ′.κ ∈ unrollΞ ′(κ̂ ′)

• Local completeness: if ς̂ ,σ, t,Ξ 7−→CESK∗tΞ ς̂ ′,σ ′, t ′,Ξ ′ and inv(ς̂ ,σ, t,Ξ),
for all κ, if κ ∈ unrollΞ(ς̂ .κ̂) then there is a κ ′ such that ς̂{κ̂ := κ},σ, t 7−→CESKt

ς̂ ′{κ̂ := κ ′},σ ′, t ′ and κ ′ ∈ unrollΞ(ς̂ ′.κ̂).

Proof. Soundness follows by cases on 7−→CESKt :

Case 〈x, ρ, κ〉,σ, t 7−→CESKt 〈v, κ〉,σ,u.

where v ∈ σ(ρ(x)).
The witnesses are Ξ, κ̂. The step is constructible with the lookup
rule and the tick assumption.

Case 〈(e0 e1), ρ, κ〉,σ, t 7−→CESKt 〈e0, ρ, appL(e1, ρ):κ〉,σ,u.

The witnesses are Ξ t [τ 7→ κ̂] and appL(e1, ρ):τ, where τ =

〈(e0 e1), ρ,σ〉. The step is constructible with the application
expression rule and the tick assumption.

Case 〈v, appL(e, ρ ′):κ〉,σ, t, 7−→CESKt 〈e, ρ ′, appR(v):κ〉,σ,u.

κ̂ must be of the form appL(e, ρ ′):κ̂ ′, where κ ∈ unrollΞ(κ̂ ′), by
the definition of unrolling.

The witnesses are Ξ and appR(:)»̂ ′. The step is constructible
with the argument evaluation rule and the tick assumption.

Case 〈v, ρ, appR(λ x. e, ρ ′):κ〉,σ, t 7−→CESKt 〈e, ρ ′′, κ〉,σ ′,u.

where ρ ′′ = ρ ′[x 7→ a], σ ′ = σt [a 7→ v].

κ̂ must be of the form appR(λ x. e, ρ ′):κ̂ ′, where κ ∈ unrollΞ(κ̂ ′),
by the definition of unrolling. The witnesses are thus Ξ and κ̂ ′.
The step is constructible with the function call rule and the alloc
and tick assumptions.

Completeness follows by cases on 7−→CESK∗tΞ:

Case 〈x, ρ,σ, κ̂〉t,Ξ 7−→CESK∗tΞ 〈v,σ, κ̂〉u,Ξ.

where v ∈ σ(ρ(x))
The witness is κ. The step is constructible with the lookup rule
and the tick assumption.

Case 〈(e0 e1), ρ,σ, κ̂〉t,Ξ 7−→CESK∗tΞ 〈e0, ρ,σ, appL(e1, ρ):τ〉u,Ξ ′.

where τ = 〈(e0 e1), ρ,σ〉t, Ξ ′ = Ξt [τ 7→ κ̂].

The witness is appL(e,ρ):κ by definition of unrolling. The step
is constructible with the application expression rule and the tick
assumption.

1 proofs for Section 4 .2 221

Case 〈v,σ, appL(e, ρ ′):τ〉t,Ξ 7−→CESK∗tΞ 〈e, ρ
′,σ, appR(v):τ〉u,Ξ.

The given κ must be of the form appL(e, ρ ′):κ ′ by definition of
unrolling. The witness is appR(v):κ ′. The step is constructible
with the argument evaluation rule and the tick assumption.

Case 〈v, ρ,σ, appR(λ x. e, ρ ′):τ〉t,Ξ 7−→CESK∗tΞ 〈e, ρ
′′,σ ′, κ̂〉u,Ξ.

where κ̂ ∈ Ξ(τ), ρ ′′ = ρ ′[x 7→ a], σ ′ = σt [a 7→ v].

The given κ must be of the form appR(λ x. e, ρ ′):κ ′ by definition
of unrolling. The witness is κ ′. The step is constructible with
the function application rule and the tick and alloc assumptions.

correctness theorem 15 For all e0, let ς0 = 〈e0,⊥, ε〉,⊥, t0 in
∀n ∈N, ς , ς ′ ∈ CESKt:

• if (ς , ς ′) ∈ unfold(ς0, 7−→CESKt ,n) then there is an m such that
ς 7−→reify(Fme0(⊥))

ς ′

• if ς 7−→reify(Fne0(⊥))
ς ′ then there is an m such that (ς , ς ′) ∈

unfold(ς0, 7−→CESKt ,m)

Proof. By induction on n.

Case 0.

Both vacuously true.

Case i+ 1.

First bullet: If (ς , ς ′) is not newly added at i + 1, then holds
by IH. Otherwise, we have a step ς 7−→CESKt ς

′ by definition of
unfold1. By IH, in i steps ς is reachable, in the reified system. By
cases on the rule that added (ς , ς ′) to unfold. Reasoning follows
the same as soundness bullet of Theorem 14.

Second bullet: Let S = reify(Fi+1e0
(⊥)) If the step is not newly

added at i + 1, then holds by IH. Otherwise, we have a pair
ς , ς ′ ∈ S.R that was extended by a step ς ,Ξ 7−→ ς̂ ′,Ξ ′ where
Ξ ′ v S.Ξ and invΞ(Ξ ′). Reasoning follows the same as the local
completeness bullet of Theorem 14.

222 proofs for pushdown

2 proofs for Section 4 .4

For alloc in 7−→SR and âlloc in 7−→SRSχt , the two “behave” if

∃a,a ′.∀κ v unrollΞκ̂,χ(κ̂). ∀C v unrollCΞκ̂,ΞĈ,χ(.)
(a,a ′) = âlloc(ev (shift x.e, ρ, σ̂,χ, κ̂, Ĉ),Ξκ̂,ΞĈ)

alloc(ev (shift x.e, ρ,σ, κ,C)) = a

∃a.∀κ v unrollΞκ̂,χ(κ̂).
∀C v unrollCΞκ̂,ΞĈ,χ(.) (fun(λ x. e, ρ), τ) ∈ pop(Ξκ̂,χ, κ̂)

alloc(co (fun(λ x. e, ρ):κκ,C, v,σ)) = âlloc(co (κ̂, Ĉ, v̂, σ̂,χ),Ξκ̂,ΞĈ)

Lemma 60 (A is sound). If κ v unrollΞκ̂,χ(κ̂) then for (χ ′, κ̃) = A(χ,a, κ̂),
κ v unrollΞκ̂,χ ′(κ̃)

Proof. By routine case analysis on κ̂.

soundness theorem 23 If ς 7−→SR ς ′, and ς v ς̂ ,Ξκ̂,ΞĈ and
the allocation functions behave, then there are ς̂ ′,Ξ ′κ̂,Ξ ′

Ĉ
such that

ς̂ ,Ξκ̂,ΞĈ 7−→ ς̂ ′,Ξ ′κ̂,Ξ ′
Ĉ

and ς ′ v ς̂ ′,Ξ ′κ̂,Ξ ′
Ĉ

.

Proof. By cases on the concrete step:

Case ev (reset e, ρ,σ, κ,C) 7−→ ev (e, ρ,σ, ε, κ ◦C).

By assumption, we must have some σ̂,χ, κ̂, Ĉ such that ς̂ =

ev (reset e, ρ, σ̂,χ, κ̂, Ĉ) with the appropriate ordering in ς̂ . The
step is then to

ev〈e, ρ, σ̂,χ, ε,γ〉,Ξκ̂,Ξ ′
Ĉ

where γ = 〈e, ρ, σ̂,χ〉
Ξ ′
Ĉ
= ΞĈ t [γ 7→ {(κ̂, Ĉ)}]

Where the ordering is trivial.

Case co (ε, κ ◦C, v,σ) 7−→ co (κ,C, v,σ).

We must have v̂, σ̂,χ,γ such that

ς̂ = co (ε,γ, v̂, σ̂,χ)

κ ◦C v unrollCΞκ̂,ΞĈ,χ(γ)

v vΞκ̂,χ v̂

By decomposing the unroll ordering, we get our hands on the
appropriate (κ̂, Ĉ) ∈ ΞĈ(γ) so that the step is to

co (κ̂, Ĉ, v̂, σ̂,χ)

The ordering is by assumption.

3 proofs for Section 4 .5 223

Case ev (shift x.e, ρ,σ, κ,C) 7−→ ev (e, ρ[x 7→ a],σ ′, ε,C).

where a = alloc(ς), σ ′ = σt [a 7→ comp(κ)].

We must hav σ̂,χ, κ̂, Ĉ such that

σ̂ = ev (shift x.e, ρ, σ̂,χ, κ̂, Ĉ)

σ vΞκ̂,χ σ̂

κ v unrollΞκ̂,χ(κ̂)

C v unrollCΞκ̂,ΞĈ,χ(Ĉ)

By the âlloc assumption there is a a ′ such that

(a,a ′) = âlloc(ς̂ ,Ξκ̂,ΞĈ)

Let (χ ′, κ̃) = A(χ,a ′, κ̂). By Lemma 60, the step to

ev (e, ρ[x 7→ a], σ̂t [a 7→ {κ̃}],χ ′, ε, Ĉ),Ξκ̂,ΞĈ

is correctly ordered.

Case co (fun(comp(κ ′)):κ,C, v,σ) 7−→ co (κ ′, κ ◦C, v,σ).

The ordering assumption makes this trivial.

Case variable lookup.

Trivial.

Case closure creation.

Trivial.

Case application expression.

Trivial.

Case argument evaluation.

Trivial.

Case function call.

Same argument as for standard pushdown, using the alloc as-
sumption.

3 proofs for Section 4 .5

For the completeness result in this global system, we need that invΞ
is maintained over the system’s Ξ. The primary difference is about
maintenance through join. Each trace guaranteed by the invariant is
independent of the table, so we can add each mapping of a table in
whatever order.

224 proofs for pushdown

Lemma 61. If invΞ(epgm,Ξ) and invΞ(epgm,Ξ ′), then invΞ(epgm,Ξt Ξ ′).

Proof. By induction on the proof of invΞ(epgm,Ξ ′).

Lemma 62. If invM(M) and invΞ(epgm,M ′), then invM(MtM ′).

Proof. By induction on the proof of invM(M ′).

The state invariant entirely for program epgm is

inv(epgm, ς ,Ξ,M) = invΞ(epgm,Ξ)∧ invM(M)∧ dom(M) ⊆ dom(Ξ)

∧ ς .κ̂ ≡ ε =⇒ 〈epgm,⊥,⊥, ε〉 7−→∗CESKt
ς

∧ ς .κ̂ ≡ φ:τ =⇒
τ ∈ dom(Ξ)∧

∀κ.A(τ, κ) =⇒ extend(τ, κ) 7−→∗CESKt
ς{κ̂ := κ}

Lemma 63 (Memo invariant). If inv(epgm, ς ,Ξ,M) and ς ,Ξ,M 7−→CESK∗tΞM
ς ′,Ξ ′,M ′ then inv(epgm, ς ′,Ξ ′,M ′).

Proof. The invΞ component is the same as before except in the memo
use rule. The piecewise traces based on the current state’s continu-
ation are simple. I focus on the invM component. By cases on the
step:

Case 〈x, ρ,σ, κ̂〉t,Ξ,M 7−→ 〈v,σ, κ̂〉u,Ξ,M.

where v ∈ σ(ρ(x))
By assumption.

Case 〈(e0 e1), ρ,σ, κ̂〉t,Ξ,M 7−→ 〈e0, ρ,σ, appL(e1, ρ):τ〉u,Ξ ′,M.

where τ = 〈(e0 e1), ρ,σ〉t, Ξ ′ = Ξt [τ 7→ κ̂], and τ /∈ dom(M)

By assumption.

Case 〈(e0 e1), ρ,σ, κ̂〉t,Ξ,M 7−→ 〈e ′, ρ ′,σ ′, κ̂〉u,Ξ ′,M.

where τ = 〈(e0 e1), ρ,σ〉t, Ξ ′ = Ξ t [τ 7→ κ̂], and 〈e ′, ρ ′,σ ′〉 ∈
M(τ).

The invΞ(epgm,Ξ) path comes from path concatenation with the
path from invM.

Case 〈v,σ, appL(e, ρ ′):τ〉t,Ξ,M 7−→ 〈e, ρ ′,σ, appR(v):τ〉u,Ξ,M.

By assumption.

Case 〈v, ρ,σ, appR(λ x. e, ρ ′):τ〉t,Ξ,M 7−→ 〈e, ρ ′′,σ ′, κ̂〉u,Ξ,M ′.

where

κ̂ ∈ Ξ(τ)
ρ ′′ = ρ ′[x 7→ a]

σ ′ = σt [a 7→ v]

M ′ =Mt [τ 7→ {〈e, ρ ′′,σ ′〉}]

3 proofs for Section 4 .5 225

Let κ be arbitrary. We must show extend(τ, κ) 7−→∗CESKt
plug(〈e, ρ ′′,σ ′〉, κ).

By the inv assumption, there is a path from the starting state of
the continuation to the left-hand state. The function call rule is
immediately applicable, and the invariant holds for this addi-
tion to M.

P R O O F S F O R A A M L A N G U A G E

1 weak equality proofs

Our abstract term equality is an exact approximation if we can show
the relationship:

Â
tequalA - B̂

A

γA

?

a αÂ

6

t̂equalC

- B

γB

?

a αB̂

6

Specifically, we want our hands on the equation:

tequalA = αB̂ ◦ t̂equalC ◦ γA

The As and Bs are named as such to illustrate the relationship. In-
formally, this diagram says that tequalA does the best it can to mimic
t̂equalC’s behavior within the abstract domain.

In our case Â and B̂ are

Â = Ŝtore×Count× TermA × TermA

B̂ = ̂Equality

The concrete term equality function is hatted because we lift tequal
over the powerset of its input type:

t̂equalC : A→ B

where A = ℘(Store× TermC × TermC) non-empty

B = {{tt}, {ff}, {tt, ff}}

t̂equalC(S) = {tequal(σ)(t0, t1) : 〈σ, t0, t1〉 ∈ S}

The relationship between a non-empty set of booleans and ̂Equality
is the obvious Galois connection (also isomorphism):

αB̂({tt}) = Equal γB(Equal) = {tt}

αB̂({ff}) = Unequal γB(Unequal) = {ff}

αB̂({tt, ff}) = May γB(May) = {tt, ff}

The remaining pieces are αÂ and γA.

227

228 proofs for aam language

user-defined abstraction The address spaces AddrA and AddrC
are user-defined but (their powersets) must have a Galois insertion (ab-
straction is surjective). It is sufficient for us to require a user-provided
surjective address abstraction function, α, that we pointwise lift:

α : AddrC � AddrA

α : ℘(AddrC)� ℘(AddrA)

α({a . . .}) = {α(a) . . .}

γ : ℘(AddrA)→ ℘(AddrC)

γ(S){a ′ : â ∈ S,α(a ′) = â}

The user-supplied α is sufficient to build the Galois insertion:

〈℘(AddrC),⊆〉
γ
←
�
α
〈℘(AddrA),⊆〉

pointwise abstraction The abstraction function is a pointwise
abstraction with counting:

αÂ(S) = {〈σ̂,µ, α̇(t0), α̇(t1)〉 : 〈σ, t0, t1〉 ∈ S, 〈σ̂,µ〉 = αS(σ)}

The α̇ function is a structural lifting of α over concrete terms32. The32 α̇ defers to E.γ’s
right adjoint on
external terms.

α̂ function is α̇ lifted over a set of concrete terms:

α̂ : ℘(TermC)→ TermA

α̂(S) =
⊔
t∈S

α̇(t)

The αS function abstracts and counts addresses in a concrete store:

αS : Store→ Ŝtore×Count

αS(σ) = 〈σ̂,µ〉

σ̂ =
⊔

a∈dom(σ)

[α(a) 7→ α̇(σ(a))]

µ = λâ.0⊕
⊕

a∈dom(σ)

[α(a) 7→ 1]

The ⊕ operator is an abstract plus in N̂, lifted above to maps:

0⊕ n̂ = n n̂⊕ 0 = n n̂⊕ n̂ ′ = ω otherwise

concretizing the store I’ve come across some misunderstand-
ings of abstract counting, so I’m going to suggest and disspell a cou-
ple of false starts:

1 weak equality proofs 229

1. we can say an address â is fresh or concretely identifiable if
|γ({â})| = 1.
This intepretation is wrong because the Galois connection is un-
changing. Most abstract addresses will always concretize to an
infinite number of concrete addresses they can stand for. Thus
while this criterion is technically correct, it is largely inapplica-
ble.

2. The infinite set of concrete addresses γ returns can be trimmed
with the additional context of the store. We might then say â
is fresh if its corresponding concrete store only binds one of its
concrete meanings:

|dom(σ)∩ γ({â})| = 1

But whence the concrete store, σ? A naive interpretation is a
pointwise concretization of the abstract store (which depends
on concretizing terms via some γT : TermA → ℘(TermC)):

γS : Ŝtore→ ℘(Store)

γS(⊥) = {⊥}
γS(σ̂[â 7→ t̂]) = {σ[a 7→ t] : σ ∈ γS(σ̂),α(a) = â, t̂ ∈ γT (t̂)}

Which, first of all, isn’t even right. Here γS creates one concrete
store entry per abstract address, yet potentially infinitely many
such stores for all the concretizations of an abstract address.
An abstract address can denote unboundedly many concrete ad-
dresses, though. This definition should really be making in-
finitely many stores with all non-empty subsets of the α−1(â) in
their domains. Infinitely many is too many. We have µ to tell us
we do know how many concrete addresses an abstract address
denotes. But µ is not utilized at all here.

These false starts illuminate that concretization must take freshness
information into account. The concretization γA not only concretizes
the an abstract store and count, but also two abstract terms. A term is
understood in the context of a store, so we first focus on concretizing
the store, which we call γS:

γS : Ŝtore×Count→ ℘(Store)

and then we focus on the term concretization function γT :

γT : ℘(AddrC)× TermA → ℘(TermC).

The above attempt to define γS failed to properly understand ad-
dresses. If an address is used, we have no idea which or how many
of its concrete allocations could be mapped. Therefore, each used
address represents a set of sets of addresses; each individual set is

230 proofs for aam language

γS : Ŝtore×Count→ ℘(Store)

γS(σ̂,µ) =
⋃

D∈P(dom(σ̂))

γD(D, σ̂)

whereDs : AddrA → ℘(℘(AddrC))

Ds(â) = case µ(â) of

ω : ℘(α−1(â)) \ {∅}
1 : {{a} : a ∈ α−1(â)}

0 : {∅}

P : ℘(AddrA)→ ℘(℘(AddrC))

P(∅) = {∅}
P({â}∪ Â) = {A∪A ′ : A ∈ Ds(â),A ′ ∈ P(Â)}

γD : ℘(AddrC)× ℘(AddrC)× Ŝtore→ ℘(Store)

γD(∅,D, σ̂) = {⊥}
γD({a}∪Drec,D, σ̂) = {σ[a 7→ t] : σ ∈ γD(Drec,D, σ̂),

t ∈ γT (D)(σ̂(α(a)))}

Figure 49: Store concretization

the slice of a concrete store’s domain that all map through α to the
one used address. If an address is fresh, we still don’t know which
concrete address it stands for, just that there is exactly one of them.

An NDTerm in the store may refer to other addresses. As such,
concretization needs the entire scope of a concrete store it’s build-
ing before it concretizes any terms. With the set of all concrete store
domains, one-by-one we concretize each term with respect to the do-
main.

The definition of γS is in Figure 49. We implement the previous
informal description with functions Ds, P and γD. The Ds function
builds the domain slices that an abstract address gives rise to. The P
function produces the big product of these slices into whole domains
of a concrete store. The γD function is mapped over each domain to
produce all the possible concretizations of each term in the abstract
store, as scoped to the concrete store’s domain.

Even though the fresh addresses produce many stores, we view
stores with an equivalence relation that identifies “α-equivalent” stores.
The α-equivalence treats addresses in the store domain as binding po-
sitions, and addresses in the codomain as reference positions.

term concretization A term is a well-founded data structure,
but we sometimes understand an address as its mapping in the store.
Conflating an address with its contents in the store can lead to infi-
nite (ill-founded) terms as we saw in the (cons b b) example before.

1 weak equality proofs 231

We separate the concerns of understanding the address and the con-
cretization of a term by always concretizing an abstract address to a
set of concrete addresses. The important piece of the definition in
Figure 50 is that each address is concretized to a set of concrete ad-
dresses that must be inD. We don’t want to produce ill-formed terms
that have dangling pointers.

γT : ℘(AddrC)→ TermA → ℘(TermC)

γT (D)(EAddr(â)) = {EAddr(a) : a ∈ α−1(â)∩D}

γT (D)(IAddr(â, lm)) = {IAddr(a, lm) : a ∈ α−1(â)∩D}

γT (D)(Delay(â)) = {Delay(a) : a ∈ α−1(â)∩D}

γT (D)(External(E, v̂)) = {External(E, v) : v ∈ E.γ(v̂)}

γT (D)(NDT(ts, Es)) =
⋃

t̂∈Choose(NDT(ts,Es))

γT (D)(t̂)

γT (D)(Variant(n, t̂)) = each(t̂, 〈〉)
where each(〈〉, t) = {Variant(n, t)}

each(〈t̂0t̂i . . .〉, 〈t . . .〉) =
⋃

t0∈γT (D)(t̂0)

each(t̂i . . . , 〈t . . . t0〉)

I will write γσ to mean γT (dom(σ)).
Figure 50: Term concretization

An important property we need later is that smaller refinements
mean larger concretizations. This means if you restrict the store less,
it is free to mean more. The set Refinements(σ̂,µ) is all the possible
refinements: {δ : refines(δ, σ̂,µ)}.

Lemma 64 (Restrictive overwriting is antitonic). For functions f,g,g ′ :
A⇀ B where B is ordered by v, if g v g ′ v f (discretely) then f / g w f /
g ′.

Proof. Let a ∈ A be arbitrary. By cases on a ∈ dom(g):

Case a ∈ dom(g).

then so must a ∈ dom(g ′), and g(a) = g ′(a), so f / g ′(a) v f /
g(a).

Case a /∈ dom(g).

So, by cases on a ∈ dom(g ′):

Case a ∈ dom(g ′).

f / g(a) = f(a) w g ′(a) = f / g ′(a)

Case a /∈ dom(g ′).

f / g(a) = f(a) w f(a) = f / g ′(a)

232 proofs for aam language

Lemma 65 (Refinement is antitonic). If δ, δ ′ ∈ Refinements(σ̂,µ) and
δ v δ ′, then γS(σ̂ J δ,µ) ⊇ γS(σ̂ J δ ′,µ).

Proof. Follows from Lemma 64 and the fact that d•eσ̂ ◦ δ ′ v σ̂.

The Galois insertion of addresses additionally implies a Galois in-
sertion of terms (provided external descriptors have a Galois inser-
tion). First we need a couple auxiliary functions.

Let fa : TermX → ℘(AddrX) be be the set of “free addresses” (all
addresses) in a term, structurally lifted as necessary.

Lemma 66 (Term abstraction is a Galois insertion). For allD ∈ ℘(AddrC),
if α̂,γT (D) is a Galois insertion on external descriptors, then it is a Galois in-
sertion on terms. For all t̂ ∈ TermA where fa(t̂) ⊆ αA(D), (α̂ ◦ γσ)(t̂) = t̂
and for all T ⊆ TermC where fa(T) ⊆ D, (γT (D) ◦ α̂)(T) w T

The Galois insertion property is important for reasoning about
fresh addresses.

equality correctness The order we use on intermediate re-
sults ensures that equality’s constructors are incomparable. This en-
sures that, even if the term pair sets are overapproximate, the ultimate
output of t̂equal is exact.

The “so-far” result type is ordered against EqResA via vop:

Unequal(∆) vop None

A ⊆ A ′

May(A) vop Some(A ′)

Let γ̈σ : P̂airs→ ℘(Pairs) be

γ̈σ(∅) = {∅}
γ̈σ({〈t̂0, t̂1〉}∪ Â) = {A∪ (T0 × T1) : A ∈ γ̈σ(Â), T0 ∈ γ̃σ(t̂0), T1 ∈ γ̃σ(t̂1)}

where γ̃σ : TermA → ℘(℘(TermC)) gives the set of sets of possible
concretizations of an abstract term from Â that could appear in Â:

γ̃σ(t̂) = ℘(γσ(t̂)) \ {∅}

We remove the empty set of terms because each term has at least one
concretization (since α is total).

Let αeq : ℘(EqResC)→ EqResA be

αeq(S) = add-none(S,
⊔

Some(A)∈S

Equal(α(A)))

add-none(S, Unequal) = Unequal(∅)
add-none({None, _ . . .}, Equal(A)) = May(A)

add-none(S, Equal(A)) = Equal(∅,A) otherwise

The refinement sets are empty because the concrete world has perfect
information; no state splitting is necessary.

Let α̈ : Pairs→ P̂airs be

α̈(A) = {〈α(t0),α(t1)〉 : 〈t0, t1〉 ∈ A}

1 weak equality proofs 233

[term abstraction is a galois insertion] Lemma 66

If α̂,γσ is a Galois insertion on external descriptors, then it is a Galois
insertion on terms.

For all t̂ ∈ T̂erm,

fa(t̂) ⊆ α(dom(σ)) =⇒ (α̂ ◦ γσ)(t̂) = t̂

for all T ⊆ TermC

fa(T) ⊆ dom(σ) =⇒ (γσ ◦ α̂)(T) w T

Proof. First part: induct on t̂.

Case IAddr(â, lm).

By surjectivity of α, α−1(â) is non-empty.

By assumption, â ∈ α(dom(σ)).

Thus γσ(t̂) = {IAddr(a, lm) : a ∈ α−1(â)} is non-empty.

By definition of α̂, the goal holds.

Case EAddr(â).

Same as previous case.

Case Delay(â).

Same as previous case.

Case NDT(ts, Es).

By definition, γσ(NDT(ts, Es)) =
⋃

t̂ ′∈Choose(t̂)
γσ(t̂

′)

By IH for each t̂ ′ ∈ ts, α̂(γσ(t̂ ′)) = t̂ ′.

Since α̂ is structural, α̂(γσ(t̂)) =
⊔

t∈γσ(t̂)
α̇(t).

By definition this equals α̂(γσ(t̂)).

Case External(E, v̂).

By assumption.

Case Variant(n, t̂).

We prove a lemma with nested induction on the recursion scheme
of each:

α̂(each(n)(t̂, 〈t . . .〉)) = Variant(n, 〈α̇(t) . . .〉++t̂)

Case 〈〉, t.

By definition.

Case 〈t̂0t̂i . . .〉, 〈t . . .〉.
By the definitions of α̂ and α̇,

α̂(each(n)(〈t̂0t̂i . . .〉, 〈t . . .〉)) =
⊔

t0∈γσ(t̂0)

α̂(each(n)(t̂i . . . , 〈t . . . t0〉))

234 proofs for aam language

= [By inner IH]⊔
t0∈γσ(t̂0)

Variant(n, 〈α̇(t) . . . α̇(t0)〉++〈t̂i . . .〉)

= [By structural definition of α̇]

Variant(n, (〈α̇(t) . . .〉++〈α̂(γσ(t̂0))〉)++〈t̂i . . .〉)
= [By outer IH]

Variant(n, (〈α̇(t) . . .〉++〈t̂0〉)++〈t̂i . . .〉)

By associativity of append, the conclusion holds.

Instantiate the lemma with t̂, 〈〉.

The second part is a simple structural induction on an arbitrary
t ∈ T .

1.1 Correctness

We have to take special care with the term pair set - the higher speci-
ficity of ̂tequalauxS over ̂tequalaux means that any pair set we get back
will be a subset of what ̂tequalaux might produce. An equality result
P is processed into a possible Both answer in the following way:

strength(P) = Both(
⊔

δ ′∈dom(P),Equal(dp)=P(δ ′)

dp,
⊔

δ ′∈dom(P),Unequal(∆)=P(δ ′)

∆)

Theorem 67 (Approximation ordering). If ς̂ v ς̂ ′, σ̂ v σ̂ ′, δ ′ v δ

possible refinements, t̂equalS(ς̂ , σ̂, t0, t1, δ) v t̂equalS(ς̂
′, σ̂ ′, t0, t1, δ ′)

Proof. Straightforward structural induction.

We need an ordering that makes equality and inequality results
incomparable in the upcoming proof.

None vA None

ps ⊆ ps ′

Some(ps) vA Some(ps ′)

We can concretize an equality answer given a store with γEqRes:

γEqRes : Ŝtore→ ÊqRes→ ℘(EqRes)

γEqRes(σ̂)(êq) = {None}

γEqRes(σ̂)(Must(dp)) = {Some(ps) | δ ∈ dom(dp),σ ∈ γS(σ̂ J δ),
ps ∈ γ̈σ(dp(δ))}

γEqRes(σ̂)(May(p̂s)) = {None}∪ {Some(ps) : σ ∈ γS(σ̂), ps ∈ γ̈σ(p̂s)}

1 weak equality proofs 235

An ̂Equality approximates a set of Booleans the following way:

γ ̂Equality(Equal) = {tt}

γ ̂Equality(Unequal) = {ff}

γ ̂Equality(May) = {tt, ff}

We can concretize the input to equality with γe:

γe : (σ̂ : Ŝtore)× T̂erm× T̂erm×Refinements(σ̂)

→ ℘(Store× Term× Term)

γe(σ̂, t̂0, t̂1, δ) = {〈σ, t0, t1〉 : σ ∈ γS(σ̂ J δ), t0 ∈ γσ(t̂0), t1 ∈ γσ(t̂1)}

We can concretize the input to equality’s auxiliary function with
γ]:

γ] : (σ̂ : Ŝtore)× T̂erm× T̂erm×Refinements(σ̂)× P̂airs

→ ℘(Store× Term× Term× Pairs)

γ](σ̂, t̂0, t̂1, δ, p̂s) = {〈σ, t0, t1, ps〉 : σ ∈ γS(σ̂ J δ), t0 ∈ γσ(t̂0), t1 ∈ γσ(t̂1), ps ∈ γ̈σ(p̂s)}

Theorem 68 (Non-splitting equality is an exact approximation). γ ̂Equality ◦

t̂equal = t̂equalC ◦γe provided that external descriptors’ equality is an exact
approximation.

Proof. We prove a lemma that has the goal as a corollary. In particular
(let t̂equal

∗
C = lift(tequal∗C)),

γEqRes(σ̂) ◦ ̂tequalaux(σ̂)(t̂0, t̂1)(δ, p̂s)

wA(t̂equal
∗
C ◦ γ

])(σ̂, t̂0, t̂1, δ, p̂s)

Let σ̂ be arbitrary.
By induction on ̂tequalaux’s recursion scheme (a “larger” p̂s is a

smaller obligation since p̂s is bounded by the number of subterms
that exist in the finite store and given terms). For ease of proof, we
split the resolve rules into direct recursive calls unless we have a NDT.

Case EAddr(â), EAddr(â).

By cases on µ(â)
?
6 1:

Case tt.

Every concretization of σ̂ will produce only one a such
that α(a) = â. Thus, concrete equality will always re-
turn Some(ps) for the concretized ps set. Abstract equality
returns Must(p̂s), which concretizes to Some(ps) for each
concretization σ ∈ γS(σ̂ J δ), ps ∈ γ̈σ.

236 proofs for aam language

Case ff.

By assumption, for each σ ∈ γS(σ̂ J δ), |γ(â) ∩ dom(σ)| >

1. Thus there is a None answer for the different addresses,
and each Some answer for the pairs set concretizations.

Case IAddr(â, _), _.

By cases on â ∈ dom(δ):

Case tt.

By IH with ̂tequalaux(ctx)(δ(â), t̂1)(δ, p̂s∪ {〈δ(â), t̂1〉})

Case ff.

By cases on µ(â)
?
6 1:

Case tt.

By definition of select, we recur with δ ′ = δ[â 7→ t̂] for
each t̂ ∈ Choose(σ̂.h(â)). By cases on the result of the
join:

Case Equal(dp).

Each mapping in dp comes from a recursive call.
The concretizations line up by IH.

Case Unequal.

All recursive calls must be unequal. Holds by IH.

Case May(p̂s ′).

All pairs come from recursive calls. Both equal-
ity and inequality are represented. The concretiza-
tions line up by IH.

Case ff.

Similar to above, without changing δ.

Case _, IAddr(â, _).

Similar to previous case.

Case Delay(a), _.

Similar to previous case.

Case _, Delay(a).

Similar to previous case.

Case External(E, v̂0), External(E, v̂1).

By assumption.

Case NDT(ts, Es), _.

By cases on the join:

1 weak equality proofs 237

Case Equal(dp).

All choices were equal and each entry from dp comes from
the answer of at least one choice. Composes with IH.

Case Unequal.

All choices were unequal. Composes with IH.

Case May(p̂s).

Both equal and unequal results are possible. Whatever
pairs we come up with will contain the pair sets of the May
or Equal results from the recursive calls that contributed to
p̂s, so the conclusion holds.

Case _, NDT(ts, Es).

Similar to previous case.

Case Variant(n, t), Variant(n, t ′).

By induction on both t and t ′,

γEqRes(σ̂) ◦ VA wA VC ◦ γ](σ̂)

where γ is like γ], but mapped over lists of terms:

γ(σ̂)(t̂, t̂ ′)(δ, p̂s) = {〈σ, t, t ′, ps〉 : σ ∈ γS(σ̂ J δ), t ∈ γσ(t̂), t ′ ∈ γσ(t̂ ′), ps ∈ γ̈σ(p̂s)}

γσ(〈〉) = {〈〉}
γσ(t̂ : t̂) = {t : t : t ∈ γσ(t̂), t ∈ γσ(t̂)}

We restrict the domain of γ] so that its term pair sets must
contain the current p̂s set. This way, we can use the outer IH
within this induction.

Case 〈〉, 〈〉, δ ′, p̂s ′.

Same concretizations.

Case t̂ : t̂, t̂ ′ : t̂ ′, δ ′, p̂s ′.

By cases on ̂tequalaux(σ̂)(t̂, t̂ ′)(δ ′, p̂s ′):

Case Equal(dp).

By outer IH, the equality has the same concretization,
so we can continue with the same strength. By cases
on the joined recursive calls:

Case Equal(dp ′).

Each entry of dp ′ comes from a recursive call, so
we can use the inner IH to show the concretization
is overapproximate.

Case Unequal.

Both sides are {None}.

238 proofs for aam language

Case May(p̂s ′′).

By the inner IH, this is overapproximate thus satis-
fies the goal.

Case May(p̂s ′′).

By cases on the joined recursive calls:

Case Unequal.

The result must be Unequal, so the concrete se-
mantics will return None.

Otherwise.

The result weakens to a May with an overapproxi-
mate pair set.

Case Unequal.

By the ordering, VC’s output must be None.

Otherwise.

Unequal lengths, so both sides are {None}.

Otherwise.

The remaining terms are structurally incompatible, so ̂tequalaux
produces Unequal and t̂equal

∗
C produces {None}. Since α ′({None}) =

Unequal, the conclusion holds.

This statement about the helper functions is then easily translated
to the ̂Equality domain.

[concretization split] Theorem 27

For all C such that Cut(C, Refinements(σ̂)), γ(σ̂) =
⋃
{γ(σ̂ J δ) : δ ∈ C}

Proof. The ⊇ direction is fairly obvious, so we focus on ⊆. Let σ ∈
γ(σ̂) be arbitrary. Let δ ∈ Refinements(σ̂) be such that dom(δ) =

dom(σ̂.h), and that for all â ∈ dom(δ), σ(a) ∈ γ(δ(â)) (let a be the
unique address where dom(σ)∩γ(â) = {a}). Such a δmust exist since
σ(a) is concretized from a choice from abstract stores’ mappings. In
fact σ ∈ γ(〈σ̂ J δ〉) (*).

By definition of Cut, there is a δ ′ ∈ C such that δ ′ ~ δ. If δ ′ w δ,
then δ ′ = δ by the fact that δ is largest, which makes σ ∈ γ(σ̂ J δ ′).
If δ ′ v δ, then by Lemma 65 and (*), σ ∈ γ(σ̂ J δ ′).

[worthwhile composition] Lemma 28

Given total P,P ′ : Refinements(σ̂)→ Equality, if worthwhile(C,P), worthwhile(C ′,P ′)
and ¬conflicting(C,P,C ′,P ′) then worthwhile(CtC ′,P t P ′).

Proof. First, a simple fact of order theory gives us that the pointwise
join of antitonic functions is antitonic. Let f,g : A → B be antitonic
functions where 〈A,�〉 and 〈B,v〉 are join-semilattices. Let a � a ′

1 weak equality proofs 239

be arbitrary elements of A. By antitonicity, f(a) w f(a ′) and g(a) w
g(a ′). We then must show f(a) t g(a) w f(a ′) t g(a ′). Since f(a ′) v
f(a) v f(a) t g(a) and g(a ′) v g(a) v f(a) t g(a), the least upper
bound property of join implies f(a ′)t g(a ′) v f(a)t g(a).

Next, we show that C tC ′ is a cut of Refinements(σ̂). By definition
of C t C ′, no two elements are comparable. Let δ ∈ Refinements(σ̂)
be arbitrary. Since C and C ′ are both cuts, both have comparable
refinements, δ ′ and δ ′′. If δ ′ v δ ′′, then δ ′′ ∈ C t C ′. If δ ′′ v δ ′

then δ ′ ∈ C tC ′. Otherwise, both are in C tC ′ and either choice is
adequate. Thus Cut(CtC ′, Refinement(σ̂)).

Finally, we must show that for any δ ∈ C tC ′, (P t P ′)(δ) < May.
The only troublesome case is when δ ∈ dom(P) u dom(P ′), because
the other cases are handled by the corresponding worthwhile cuts. If
δ ∈ C, then let δ ′ ∈ C ′ be the refinement guaranteed by the cut prop-
erty of C ′: δ~ δ ′. By the non-conflicting hypothesis, P(δ) t P ′(δ ′) 6=
May. By definition of C tC ′, δ ′ v δ. By antitonicity, P ′(δ) v P ′(δ ′).
By property of the Equality lattice, P(δ) = P ′(δ ′) = P ′(δ). Therefore
(P t P ′)(δ) 6= May, and since May is >, (P t P ′)(δ) < May.

The argument is symmetric if δ ∈ C ′.

[conflicting composition never worthwhile] Lemma 29

If conflicting(C,P,C ′,P ′), then for all C ′′, ¬worthwhile(C ′′,P t P ′).

Proof. The goal restated in simpler terms is all cuts of P t P ′ have a
refinement that maps to May. By the conflict hypothesis, there are δ ∈
C, δ ′ ∈ C ′ such that δ~ δ ′ and P(δ) t P ′(δ ′) = May. By antitonicity,
the larger of the two maintains the same answer in the Equality join-
semilattice. Without loss of generality, let δ be the larger. There must
be a δ ′′ ~ δ in C ′′ since it is a cut. If δ ′′ v δ, then P(δ ′′) w P(δ) and
P ′(δ ′′) w P ′(δ), meaning the mapping is the same or May. We already
know the mapping at δ joins to May, so (PtP ′)(δ ′′) = May. If δ v δ ′′,
then P(δ ′′) v P(δ), meaning P(δ ′′) = P(δ) and P ′(δ ′′) = P ′(δ), so
again (P t P ′)(δ ′′) = May. Thus, since C ′′ was arbitrary, there is no
worthwhile cut of P t P ′.

The next lemma tells us that once an equality produces a collection
of refinements, we can replay the equality given each refinement and
get the same single refinement back.

Lemma 69 (Answers don’t split). If ̂tequalauxS(ctx)(t̂0, t̂1)(δ, ps) =

Both(dp,∆), then

• for all δ ′ ∈ dom(dp), ̂tequalauxS(ctx)(t̂0, t̂1)(δ ′, ps) = Both([δ ′ 7→
dp(δ ′)], ∅)

• for all δ ′ ∈ ∆, ̂tequalauxS(ctx)(t̂0, t̂1)(δ ′, ps) = Both(⊥, {δ ′})

if the same holds for external descriptors.

240 proofs for aam language

Proof. By induction on ̂tequalauxS’s recursion scheme.

Case EAddr(â), EAddr(â).

By cases on µ(â)
?
6 1

Case µ(â) = 1.

The goal holds by computation.

Otherwise.

Vacuously true, since not a Both answer.

Case resolvable, _.

If an already refined address, the IH applies. Otherwise, we
combine several results.

By cases on the result of the join.

Case May(A ′).

Vacuously true.

Case Both(R,D).

Each refinement in dom(R) and D come from one of the
recursive calls’ answers. By IH, the goal holds.

Case _, resolvable, _.

Like above.

Case Variant(n, t), Variant(n, t ′).

By nested induction on the recursion scheme of VS. The combi-
nation logic of the resolve case is similar.

Case External(E, v0), External(E, v1).

By assumption.

Otherwise.

Structurally unequal, so Both(⊥, {δ}) is the answer. The goal
holds since the only δ ′ ∈ ∆ is δ.

We have a new concretization for ÊqResS:

γEqResS : Ŝtore→ ÊqResS → ℘(EqRes)

γEqResS(σ̂)(Both(dp,∆)) = {None : ∃δ ∈ ∆}
∪ {Some(ps) : δ ∈ dom(dp),σ ∈ γS(σ̂ J δ), ps ∈ γ̈σ(dp(δ))}

γEqResS(σ̂)(May(p̂s)) = {None}∪ {Some(ps) : σ ∈ γS(σ̂), ps ∈ γ̈σ(p̂s)}

1 weak equality proofs 241

Another concretization for ̂EqualityS:

γ ̂EqualityS
(May) = {tt, ff}

γ ̂EqualityS
(Split(_, _)) = {tt, ff}

γ ̂EqualityS
(Equal) = {tt}

γ ̂EqualityS
(Unequal) = {ff}

Theorem 70 (Splitting equality is an exact approximation). γ ̂EqualityS
◦

t̂equalS = t̂equalC ◦ γ] provided that external descriptors’ equality is an
exact approximation.

Proof. Follows the same reasoning as the non-splitting version.

Theorem 71 (Splitting equality worthwhile).

̂tequalauxS(ς̂ , σ̂)(t̂0, t̂1)(δ, ps) ∈ if P̃
?
= ∅ then

{May(ps ′) : May(ps ′) vA ̂tequalaux(ς̂ , σ̂)(t̂0, t̂1)(δ, p̂s)}

else {strength(P) : P ∈ P̃}

where

P = [δ ′ 7→ ̂tequalaux(ς̂ , σ̂)(t̂0, t̂1)(δ ′, ps) : δ ′ ∈ Refinements(σ̂), δ v δ ′]

P̃ = {P|C : worthwhile(C, ̂equality ◦ P)}

if external descriptors satisfy the same.

Proof. Fix ς̂ , σ̂ and induct on the recursion scheme of ̂tequalauxS(ς̂ , σ̂).

Case EAddr(â), EAddr(â).

By cases on µ(â)
?
6 1

Case µ(â) = 1.

No further refinement necessary. The cut is a singleton of
the bottom element, δ.

Otherwise.

No refinement possible. Not worthwhile, so May is cor-
rect.

Case resolvable, _.

If an already refined address, the IH applies. Otherwise, we
combine several results.

By cases on the result of the join.

242 proofs for aam language

Case May(A ′).

Either a term did not have worthwhile cut, or a conflict
lead to the jump to May. In the first case, we use fruit-
less extension Lemma 30. If the second case, we use the
conflicts are never worthwhile Lemma 29.

Case Both(R,D).

All choices must lead to strong results that do not con-
flict. By IH, each individual term has a worthwhile cut.
By Lemma 28, their combination is worthwhile. The goal
space represents all worthwhile answers.

Case _, resolvable, _.

Like above.

Case Variant(n, t), Variant(n, t ′).

By nested induction on the recursion scheme of VS.

Case External(E, v0), External(E, v1).

By assumption.

Otherwise.

Structurally unequal, so all ̂tequalaux results are Unequal, and
the current refinement is ample justification.

2 weak matching proofs

Non-refining matching functions is similarly definable. Generalize
worthwhile to allow May and Equal to carry arbitrary payloads for
the following. The strength operation additionally generalizes.

strength(P) = Both([δ ′ 7→ {ρ . . .} : Strongly({ρ . . .}) = P(δ ′)],

{δ ′ : Unequal = P(δ ′)})

[non-refining matching an exact approximation] The-
orem 31

γ ′ ◦ M̂ =M ◦γ where γ is the structural concretization of M̂’s inputs,
and γ ′ is the concretization of Res[M̂Env].

Proof. Simple induction following the same reasoning as equality.

Lemma 72 (Match answers don’t split). If M̂∗S(ctx)(p, t, ρ)(δ) = Both(de,∆),
then

• for all δ ′ ∈ dom(de), M̂∗S(ctx)(p, t, ρ)(δ ′) = Both([δ ′ 7→ de(δ ′)], ∅)

• for all δ ′ ∈ ∆, M̂∗S(ctx)(p, t, ρ)(δ ′) = Both(⊥, {δ ′})

2 weak matching proofs 243

and if VM̂(ctx)(p, t, ρ)(δ) = Both(de,∆), then

• for all δ ′ ∈ dom(de), VM̂(ctx)(p, t, ρ)(δ ′) = Both([δ ′ 7→ de(δ ′)], ∅)

• for all δ ′ ∈ ∆, VM̂(ctx)(p, t, ρ)(δ ′) = Both(⊥, {δ ′})

if the same holds for external descriptors.

Proof. By induction on the recursion scheme.

Case Name(x,p), t.

By cases on x
?
∈ dom(ρ):

Case x ∈ dom(ρ).

By cases on t̂equalS(ctx)(ρ(x), t, δ):

Case Equal.

By IH.

Case Unequal.

By definition.

Case Split(∆=,∆6=).

By cases on the result of the join:

Case Both(de,∆ ′).

By IH, Lemma 69.

Case May(U).

Vacuously true.

Case May.

If the result is a failure, use IH. Otherwise the result is
May and the goal vacuously holds.

Case x /∈ dom(ρ).

By cases on the result. If Both, then the positive answers
are separable by refinement by definition of t on Refmap.
If May, then vacuously true.

Case Wild, t.

By definition.

Case Is-Addr, EAddr(_).

By definition.

Case Is-External(E), Ex(E, _).

By definition.

244 proofs for aam language

Case V(n,p), V(n, t).

By induction on VM̂’s recursion scheme.

Case 〈〉, 〈〉.

By definition.

Case p0p, t0t.

If join is Both, we appeal to outer IH for p0, t0, and inner
IH for the rest.

Otherwise.

By definition.

Case p, resolvable.

Same reasoning as x /∈ dom(ρ) case.

Otherwise.

By definition.

[correctness of splitting matching] Theorem 32

M̂∗S(ς̂ , σ̂)(p, t, δ, ρ) is in

if P̃
?
= ∅ then

{M̂(ς̂ , σ̂)(p, t, ρ)(δ)}

else

{Both([δ 7→ U : P(δ) = return(δ,U)],P−1(Fail)) : P ∈ P̃}
where P = [δ 7→ M̂(ς̂ , σ̂)(p, t, ρ)(δ ′) : δ ′ ∈ Refinements(σ̂), δ v δ ′]

P̃ = {P|C : worthwhile ′(C,P)}

Proof. By induction on M̂∗S’s recursion scheme. Cases below are by
pattern and term since other arguments are constant.

Case Name(x,p), t.

By cases on x
?
∈ dom(ρ):

Case x ∈ dom(ρ).

By cases on t̂equalS(ctx)(ρ(x), t, δ):

Case Equal.

By IH.

Case Unequal.

By definition.

3 weak evaluation proofs 245

Case Split(∆=,∆6=).

By cases on the join:

Case Both(de ′,∆ ′).

All choices must lead to strong results that do not
conflict. By IH, each individual term has a worth-
while cut. By Lemma 28, their combination is worth-
while. By Lemma 72, the goal space has the ex-
pected shape, and represents the worthwhile an-
swers.

Case May(U).

Either a match did not have worthwhile cut, or a
conflict lead to the jump to May. In the first case,
we use fruitless extension Lemma 30. If the sec-
ond case, we use the conflicts are never worthwhile
Lemma 29.

Case May.

By Theorem 71, there is no worthwhile cut to show
equality. If the match fails in the recursive call, use IH.

Case x /∈ dom(ρ).

Same reasoning as above for joins.

Case Wild, t.

By definition.

Case Is-Addr, EAddr(_).

By definition.

Case Is-External(E), Ex(E, _).

By definition.

Case V(n,p), V(n, t).

By nested induction. Reasoning for joins follows previous cases.

Case p, resolvable.

If an already resolved address, apply IH. Otherwise case split
on the result of the join and use above reasoning.

Otherwise.

By definition.

3 weak evaluation proofs

Lemma 73 (Cut composition). Let 〈P,v〉 be a finite poset with a bottom el-
ement b. If Cut(C,P) and ∀a ∈ C there is a Ca such that Cut(Ca, {c ∈ P :

a v c}), then Cut(
⊔
a
Ca,P).

246 proofs for aam language

Proof. Let c ∈ P be arbitrary. We must show there is a c ′ ∈
⊔
a
Ca such

that c~ c ′. Let d ∈ C be the cut element for c. By inversion on d~ c:

Case d v c.

Cd cuts the space {cd ∈ P : d v cd}, which c is in. Since C is
a cut, d is incomparable to all other elements of C. Therefore,
d ∈

⊔
a
Ca.

Case c v d.

Every element of Cd is greater than c. Choose the largest in⊔
a
Ca.

P R O O F S F O R T E M P O R A L C O N T R A C T S

1 denotations

full in prefix Lemma 34 F[[T◦]]ρ ⊆ P[[T◦]]ρ

Proof. By induction on T◦.

prefix closed Theorem 33 prefixes(P[[T◦]]ρ) = P[[T◦]]ρ

Proof. By induction on T◦:

Case A.

Only traces are matching actions and ε. Holds by definition.

Case !A.

Only traces are non-matching actions and ε. Holds by defini-
tion.

Case ε.

Holds by definition.

Case ¬T◦.

P[[¬T◦]]ρ = ¬F[[T◦]]ρ.
We prove a generalized property that prefixes(¬(Π)) = ¬(Π): Let
π ∈ ¬(Π) and π ′ ∈ Trace be arbitrary such that π ′ 6 π. We must
show that π ′ ∈ ¬(Π). If π = ε, then π ′ = ε and we’re done. By
definition, there is no prefix of π in Π \ {ε}. Thus, since π ′ is a
prefix of π, it is not in Π \ ε and must therefore be in ¬(Π).

Case T◦ · T◦.
Let π ∈ P[[T◦0 · T◦1]]ρ and π ′ 6 π be arbitrary. If π ∈ P[[T◦0]]ρ then
by IH, we’re done. Otherwise, π ≡ π0π1 where π0 ∈ F[[T◦0]]ρ
and π1 ∈ P[[T◦1]]ρ
if π ′ 6 π0, then by Lemma 34 and IH, we’re done. Otherwise,
π ′ ≡ π0π ′1, and by IH, π ′1 6 π1, and we’re done.

Case T◦∗.

By IH.

Case ∪T̃◦.
By IH.

Case ∩T̃◦.
By IH.

247

248 proofs for temporal contracts

Case 〈A〉 T◦.

By IH and simple cases on empty and singleton traces.

2 derivatives

theorem 35 The following are mutually true

1. F[[∂ρdT
◦]] = {π : dπ ∈ F[[T◦]]ρ}

2. P[[∂ρdT
◦]] = {π : dπ ∈ P[[T◦]]ρ}

3. F[[∂dT]] = {π : dπ ∈ F[[T]]}

4. P[[∂dT]] = {π : dπ ∈ P[[T]]}

Proof. By mutual induction on the functional schemes, equational rea-
soning and Lemma 36.

S E M A N T I C S I N H A S K E L L

{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses,
UndecidableInstances, GeneralizedNewtypeDeriving,
NoMonomorphismRestriction, GADTs, KindSignatures,
RankNTypes, ConstraintKinds #-}

import Data.Map hiding (fold)
import Data.Set hiding (fold)
import Data.Maybe
import Control.Monad.State
import Control.Monad.ConstrainedNormal
import qualified Data.Functor.Identity as Fid
import Test.HUnit hiding (State)
import qualified Data.Map as Map
import qualified Data.Set as Set

-- Monad magic

newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }
bindMT :: (Monad m) => (MaybeT m a) -> (a -> MaybeT m b) -> MaybeT m b
bindMT x f = MaybeT $ runMaybeT x >>= maybe (return Nothing) (runMaybeT . f)

returnMT :: (Monad m) => a -> MaybeT m a
returnMT a = MaybeT $ return (Just a)

failMT :: (Monad m) => t -> MaybeT m a
failMT _ = MaybeT $ return Nothing

instance (Monad m) => Monad (MaybeT m) where
return = returnMT
(>>=) = bindMT
fail = failMT

instance MonadTrans MaybeT where
lift m = MaybeT (Just ‘liftM‘ m)

instance (MonadState s m) => MonadState s (MaybeT m) where
get = lift get
put k = lift (put k)

newtype MState a b = MS {
runMS :: MaybeT (State a) b
} deriving (Monad, MonadState a)

-- Concrete stuff

type Name = String

data AddrC = AddrC (String, [Int]) deriving (Eq,Ord,Show)
newtype AddrA = AddrA String deriving (Eq,Ord,Show)

-- Lookup mode
data LM = Deref | Delay | Resolve deriving (Eq,Ord,Show)

249

250 semantics in haskell

-- Match mode
data MM = Explicit | Implicit LM deriving (Eq,Ord,Show)
-- Equality mode
data EM = Structural | Identity deriving (Eq,Ord,Show)

-- A concrete term is a variant, a map, a qualified address or a delayed lookup
data TermC =
VC Name [TermC]
| QC AddrC MM EM
| DC AddrC
deriving (Eq, Ord, Show)

type Store = Map AddrC TermC

-- test data
ac0 = AddrC ("addr", [])
nilc = VC "nil" []
tc0 = VC "cons" [nilc, nilc]
tc1 = VC "mumble" [tc0, nilc]
s0 = Map.insert ac0 tc0 Map.empty

--
-- Concrete term equality
--
type Pairs = Set (TermC, TermC)
type EqResC = Maybe Pairs
tequalC :: Store -> TermC -> TermC -> Bool
tequalC s t0 t1 = case coindC s t0 t1 Set.empty of

Just _ -> True
Nothing -> False

-- The ps variable is the math’s ‘A‘
coind :: (Functor f, Ord a) =>

(Set (a,a) -> f (Set (a,a))) ->
(a -> a -> Set (a,a) -> f (Set (a,a))) ->
a -> a -> Set (a,a) -> f (Set (a,a))

coind ret f t0 t1 ps = if Set.member (t0,t1) ps then
ret ps

else f t0 t1 (Set.insert (t0,t1) ps)
coindC s = coind Just (tequalauxC s)

tequalauxC :: Store -> TermC -> TermC -> Pairs -> EqResC
tequalauxC s (QC ac0 _ Identity) (QC ac1 _ Identity) ps | ac0 == ac1 = Just ps
-- Qualified and delayed terms just lookup
tequalauxC s (QC ac _ Structural) t1 ps = coindC s (s ! ac) t1 ps
tequalauxC s t0 (QC ac _ Structural) ps = coindC s t0 (s ! ac) ps
tequalauxC s (DC ac) t1 ps = coindC s (s ! ac) t1 ps
tequalauxC s t0 (DC ac) ps = coindC s t0 (s ! ac) ps
-- variants compared pointwise with eqvc
tequalauxC s (VC n0 ts0) (VC n1 ts1) ps | n0 == n1 = eqvc s ts0 ts1 ps
tequalauxC s _ _ ps = Nothing

equalTest0 = TestCase (assertBool "Reflexivity" (tequalC s0 tc0 tc0))
equalTest1 = TestCase (assertBool "Different" (not (tequalC s0 tc0 tc1)))

-- Are two lists of terms equal?
eqvc :: Store -> [TermC] -> [TermC] -> Pairs -> EqResC
eqvc s [] [] ps = Just ps

semantics in haskell 251

eqvc s (t0:ts0) (t1:ts1) ps = coindC s t0 t1 ps >>= eqvc s ts0 ts1
eqvc s _ _ ps = Nothing

--
-- Abstract terms
--

data Flat a = FTop | FVal a deriving (Eq,Ord,Show)

type Ctx t = (StateHat t, StoreHat t)

type AbsEq t = Ctx t -> ExtVal -> ExtVal -> EqResAM t
type SplitEq t = Ctx t -> ExtVal -> ExtVal

-> EqResM t (ATerm t, ATerm t)
type ExtLess t = Ctx t -> ExtVal -> ExtVal -> LessRes t
type ExtJoin t = Ctx t -> ExtVal -> ExtVal -> JoinRes t ExtVal

-- shouldn’t really derive for these, but this is a placeholder.
data ExtVal = EString (Flat String) | ENumber (Flat Int) deriving (Eq,Ord,Show)
data ExternalDescriptor t = ExternalDescriptor {
name :: Name,
equivA :: AbsEq t,
equivS :: SplitEq t,
less :: ExtLess t,
ejoin :: ExtJoin t
}

instance Eq (ExternalDescriptor t) where
ExternalDescriptor {name=n} == ExternalDescriptor {name=n’} = n == n’

instance Ord (ExternalDescriptor t) where
ExternalDescriptor {name=n} <= ExternalDescriptor {name=n’} = n <= n’

instance Show (ExternalDescriptor t) where
show (ExternalDescriptor {name=n}) = "External: " ++ show n

stringEquiv :: AbsEq t
stringEquiv s (EString es) (EString es’) = eq es es’
where eq FTop _ d ps = May ps

eq _ FTop d ps = May ps
eq (FVal v) (FVal v’) d ps = if v == v’ then

Equal (Map.singleton d ps)
else
Unequal (Set.singleton d)

stringEquiv s _ _ = \ d _ -> Unequal (Set.singleton d)

stringEquivS :: SplitEq t
stringEquivS s (EString es) (EString es’) = eq es es’
where eq FTop _ d ps = MayS ps

eq _ FTop d ps = MayS ps
eq (FVal v) (FVal v’) d ps = if v == v’ then

Both (Map.singleton d ps) Set.empty
else
Both Map.empty (Set.singleton d)

stringEquivS s _ _ = \ d _ -> Both Map.empty (Set.singleton d)

fless :: (Eq a) => Flat a -> Flat a -> Bool
fless _ FTop = True
fless (FVal v) (FVal v’) | v == v’ = True
fless _ _ = False

252 semantics in haskell

fjoin :: (Eq a) => Flat a -> Flat a -> Flat a
fjoin fv@(FVal v) (FVal v’) | v == v’ = fv
fjoin _ _ = FTop

stringLess :: ExtLess t
stringLess s (EString es) (EString es’) = if fless es es’ then

return ()
else MS $ failMT ()

stringJoin :: ExtJoin t
stringJoin s (EString es) (EString es’) = return $ EString $ fjoin es es’
stringJoin _ _ _ = error "Expected strings"

stringExt :: ExternalDescriptor t
stringExt = ExternalDescriptor {
name = "String",
equivA = stringEquiv,
equivS = stringEquivS,
less = stringLess,
ejoin = stringJoin }

data STerm t =
VA Name [TermA t]
| QA AddrA MM EM
deriving (Eq,Ord,Show)

data PreTerm t =
STerm (STerm t)
| EA (ExternalDescriptor t) ExtVal
| DA AddrA
deriving (Eq, Ord, Show)

data ATerm t =
ASTerm (STerm t)
| AEA (ExternalDescriptor t) ExtVal
deriving (Eq, Ord, Show)

type ExtMap t = Map (ExternalDescriptor t) ExtVal

type AbsTerm t = (Set (STerm t), ExtMap t)
data TermA t = PreTerm (PreTerm t)

| TAbs (AbsTerm t) deriving (Eq,Ord,Show)
type MapA t = Map (TermA t) (TermA t)

termbot :: TermA t
termbot = TAbs (Set.empty, Map.empty)

type HeapHat t = Map AddrA (AbsTerm t)
data StoreHat t = StoreHat (HeapHat t) Count deriving (Eq,Ord,Show)
type PairsHat t = Set (ATerm t, ATerm t)

-- test data
aa0 = AddrA "addr"
nila = VA "nil" []
unita = VA "unit" []
tnila = PreTerm $ STerm nila

semantics in haskell 253

tunita = PreTerm $ STerm unita
tblur0 = VA "blur" [TAbs (Set.insert nila (Set.singleton unita), Map.empty)]
tblur1 = VA "blur" [PreTerm $ STerm nila]

ma0 = Map.singleton (PreTerm (DA aa0)) tnila
ma1 = Map.insert (PreTerm (STerm tblur1)) tnila $

Map.singleton (PreTerm (DA aa0)) tnila

--
-- TermA <= TermA
type LessRes t = MState (PairsHat t) ()

unwrapLess :: LessRes t -> (PairsHat t) -> Bool
unwrapLess lr ps = case runStateT (runMaybeT $ runMS lr) ps of
Fid.Identity (Just _,_) -> True
Fid.Identity (Nothing,_) -> False

-- Without an ML functor, all these functions take a StoreHat first. Ugh.

mkAbsTerm :: StoreHat t -> TermA t -> AbsTerm t
mkAbsTerm (StoreHat h _) (PreTerm (DA a)) = h ! a
mkAbsTerm s (PreTerm (EA ed v)) = (Set.empty, Map.singleton ed v)
mkAbsTerm s (PreTerm (STerm st)) = (Set.singleton st, Map.empty)
mkAbsTerm s (TAbs abs) = abs

-- Top level entry into term ordering.
termLess :: Ctx t -> TermA t -> TermA t -> Bool
termLess c@(_,s) t0 t1 = unwrapLess

(absTermLess c (mkAbsTerm s t0) (mkAbsTerm s t1))
Set.empty

absTermLess :: Ctx t -> AbsTerm t -> AbsTerm t -> LessRes t
absTermLess c (sts,es) (sts’,es’) = do stermsAllLess c sts sts’

extsAllLess c es es’

extsAllLess :: Ctx t -> ExtMap t -> ExtMap t -> LessRes t
extsAllLess c es es’ = Map.foldlWithKey (\ res ed v ->

do res
maybe
(MS $ failMT ())
(less ed c v)
(Map.lookup ed es’))

(return ()) es

termAless :: Ctx t -> TermA t -> TermA t -> LessRes t
termAless c@(_,s) t0 t1 = absTermLess c (mkAbsTerm s t0) (mkAbsTerm s t1)

-- STerm <= STerm
stermLess :: Ctx t -> STerm t -> STerm t -> LessRes t
stermLess c@(_,s@(StoreHat h _)) st0 st1 =
do ps <- get

let pair = (ASTerm st0, ASTerm st1) in
if Set.member pair ps then
return ()

else do put (Set.insert pair ps)
case (st0,st1) of
(VA n0 ts0, VA n1 ts1) ->

254 semantics in haskell

if n0 == n1 then
foldM (\ res (t0,t1) -> do { termAless c t0 t1})
()
(zip ts0 ts1)

else MS $ failMT ()
(QA _ _ Identity, QA _ _ Identity) -> if st0 == st1 then

return ()
else MS $ failMT ()

(_, QA a _ Structural) -> stermOneLess c st0 (fst $ h ! a)
(QA a _ Structural, _) -> absTermLessSTerm c (h ! a) st1
(_,_) -> MS $ failMT ()

atermLessTop :: Ctx t -> ATerm t -> ATerm t -> Bool
atermLessTop s a0 a1 = unwrapLess (atermLess s a0 a1) Set.empty

atermLess :: Ctx t -> ATerm t -> ATerm t -> LessRes t
atermLess c (ASTerm st) (ASTerm st’) = stermLess c st st’
atermLess c (AEA ed v) (AEA ed’ v’) | ed == ed’ = less ed c v v’
atermLess c _ _ = MS $ failMT ()

absTermLessSTerm :: Ctx t -> AbsTerm t -> STerm t -> LessRes t
absTermLessSTerm c (sts,es) st = if Map.null es then

stermAllLess c sts st
else MS $ failMT ()

-- all t’ in (Set STerm). t’ <= t
stermAllLess :: Ctx t -> Set (STerm t) -> STerm t -> LessRes t
stermAllLess c ts t = Set.foldl (\ lr t’ ->

do {lr; stermLess c t’ t}) (return ()) ts
-- there is a t’ in (Set STerm). t <= t’
stermOneLess :: Ctx t -> STerm t -> Set (STerm t) -> LessRes t
stermOneLess c t sts = do ps <- get

Set.foldl (\ lr t’ ->
if unwrapLess lr ps then
lr
else stermLess c t t’)

(MS $ failMT ()) sts
-- all t in ts0. there is a t’ in ts1. t <= t’
stermsAllLess :: Ctx t -> Set (STerm t) -> Set (STerm t) -> LessRes t
stermsAllLess c ts0 ts1 = Set.foldl (\ lr t0 -> do {lr; stermOneLess c t0 ts1})

(return ()) ts1

--
-- End TermA <= TermA
--

--
-- TermA join TermA
--

--- XXX: joining goes through structure, so we need pairs!
-- JoinRes can’t use state since we do backtracking search

type JoinRes t a = State (PairsHat t) a

joinTermTop :: Ctx t -> TermA t -> TermA t -> TermA t
joinTermTop c t0 t1 = case runStateT (joinTerm c t0 t1) Set.empty of

semantics in haskell 255

Fid.Identity (t,_) -> t

joinTerm :: Ctx t -> TermA t -> TermA t -> JoinRes t (TermA t)
joinTerm c@(_,s) t0 t1 = joinAbsTerm c (mkAbsTerm s t0) (mkAbsTerm s t1)

joinAbsTerm :: Ctx t -> AbsTerm t -> AbsTerm t -> JoinRes t (TermA t)
joinAbsTerm c (sts,es) (sts’,es’) =
do ps <- get

case runStateT (joinSTermsSTerms c sts sts’) ps of
Fid.Identity (t,ps’) ->
do es’’ <- joinExts c es es’

case t of
TAbs (sts’’, _) -> return $ TAbs (sts’’, es’’)
-- INVARIANT: pt can only be an STerm
PreTerm (STerm st) -> return $ if Map.null es’’ then

t
else TAbs (Set.singleton st, es’’)

_ -> error ("Uh oh " ++ show t)

joinAbsTermTerm :: Ctx t -> AbsTerm t -> TermA t -> JoinRes t (TermA t)
joinAbsTermTerm c@(_,s) abs t = joinAbsTerm c abs (mkAbsTerm s t)

joinExts :: Ctx t -> ExtMap t -> ExtMap t -> JoinRes t (ExtMap t)
joinExts c es es’ = Map.foldlWithKey

(\ jr ed v ->
do es’’ <- jr

case Map.lookup ed es’ of
Just v’ -> do v’’ <- ejoin ed c v v’

return $ Map.insert ed v’’ es’’
Nothing -> return $ Map.insert ed v es’’)

(return es’) es

joinSTermsSTerms :: Ctx t -> (Set (STerm t)) -> (Set (STerm t))
-> JoinRes t (TermA t)

joinSTermsSTerms c sts0 sts1 = Set.foldl
(\ jr st0 ->
do t <- jr

case t of
TAbs abs -> joinSTermSTerms c st0 abs
_ -> error "Shouldn’t be a non TAbs")

(return $ TAbs (sts1, Map.empty)) sts0
unwrapjoin jr ps = let (Fid.Identity j) = runStateT jr ps in j

-- If any sterms in sts join to a non-tabs, then replace that term
-- with the result. Otherwise, just add st to sts
joinSTermSTerms :: Ctx t -> STerm t -> AbsTerm t -> JoinRes t (TermA t)
joinSTermSTerms c st (sts,es) =
do ps <- get

case unwrapjoin (findJoin c st sts) ps of
(Left sts’,ps’) -> do put ps’

return $ TAbs (sts’,es)
(Right sts’,ps’) -> do put ps’

return $ TAbs (Set.insert st sts’, es)

-- Left = set with structurally joined terms
-- Right = sts rebuilt.
findJoin :: Ctx t -> STerm t -> Set (STerm t)

256 semantics in haskell

-> JoinRes t (Either (Set (STerm t)) (Set (STerm t)))
findJoin c st sts =
do ps <- get

Set.foldl (help ps) (return $ Right Set.empty) sts
where help ps jeither st’ =

do either <- jeither
case either of
Left sts’ -> return $ Left (Set.insert st’ sts’)
Right sts’ -> case unwrapjoin (joinSTerm c st st’) ps of
(TAbs _,_) -> return $ Right (Set.insert st’ sts’)
(PreTerm (STerm stj),ps’) ->
do put ps’

return $ Left (Set.insert stj sts’)
_ -> error "Bad join"

threadMap :: (a -> b -> (b, c)) -> b -> [a] -> (b,[c])
threadMap f acc [] = (acc,[])
threadMap f acc (x:xs) = let (acc’,b) = f x acc in
let (acc’’,lst) = threadMap f acc’ xs in
(acc’,b:lst)

-- Combine structurally if we can.
joinSTerm :: Ctx t -> STerm t -> STerm t -> JoinRes t (TermA t)
joinSTerm c@(_,s@(StoreHat h _)) st0 st1 =
do ps <- get

let pair = (ASTerm st0,ASTerm st1) in
if Set.member pair ps then
return $ twoSTerms st0 st1
else do put $ Set.insert pair ps;

case (st0,st1) of
((VA n0 ts0), (VA n1 ts1)) ->
if n0 == n1 && length ts0 == length ts1 then
do js <- zipWithM (joinTerm c) ts0 ts1

return $ PreTerm $ STerm $ VA n0 js
else return $ twoSTerms st0 st1

((QA _ _ Identity),(QA _ _ Identity)) ->
if st0 == st1 then
return $ PreTerm $ STerm $ st0

else return $ twoSTerms st0 st1
(_, QA a _ Structural) ->
if st0 == st1 then
return $ PreTerm $ STerm $ st0

else joinAbsTermTerm c (h ! a) (PreTerm $ STerm st0)
((QA a _ Structural), _) -> joinSTermSTerms c st1 (h ! a)
_ -> return $ twoSTerms st0 st1

twoSTerms :: STerm t -> STerm t -> TermA t
twoSTerms t0 t1 = TAbs (Set.insert t0 (Set.singleton t1), Map.empty)

-- Term equality without splitting

type Refinement t = (Map AddrA (ATerm t))
type Refinements t = Set (Refinement t)

-- C0 is just unmapped
data NatHat = C1 | Cinf deriving (Eq,Ord,Show)

semantics in haskell 257

type Count = Map AddrA NatHat

--
-- Equality result type with join, return, bind
--
data EqResA t = Unequal (Refinements t)

| Equal (Map (Refinement t) (PairsHat t))
| May (PairsHat t) deriving (Show)

type EqResAM t = Refinement t -> PairsHat t -> EqResA t

squash :: (Ord b) => (Map a (Set b)) -> (Set b)
squash dps = Set.unions $ Map.elems dps

joinA :: EqResA t -> EqResA t -> EqResA t
joinA (Equal dps) (Unequal _) = May $ squash dps
joinA (Equal dps) (Equal dps’) = Equal (Map.unionWith Set.union dps dps’)
joinA eq@(May ps) (Unequal _) = eq
joinA (May ps) (Equal dps) = May $ Set.union ps $ squash dps
joinA (May ps) (May ps’) = May $ Set.union ps ps’
joinA (Unequal ps) (Unequal ps’) = Unequal $ Set.union ps ps’
-- symmetric cases
joinA (Unequal _) (Equal dps) = May $ squash dps
joinA (Unequal _) eq@(May ps) = eq
joinA (Equal dps) (May ps) = May $ Set.union ps $ squash dps

returnA :: Refinement t -> PairsHat t -> EqResA t
returnA d ps = Equal (Map.singleton d ps)

failA d = Unequal (Set.singleton d)

weakenA :: EqResA t -> EqResA t
weakenA (Equal dps) = May $ squash dps
weakenA eq = eq

seqA :: EqResAM t -> EqResAM t -> EqResAM t
seqA r f = \ d ps -> case r d ps of
eq@(Unequal _) -> eq
May ps -> weakenA (f d ps)
Equal dps -> case (Map.toList dps) of
[] -> (f d Set.empty)
(d,ps):rps’ -> Prelude.foldl

(\ eq (d’,ps’) -> joinA (f d’ ps’) eq)
(f d ps) rps’

-- Abstract Term Equality

tequalauxA :: Ctx t -> TermA t -> TermA t -> EqResAM t
tequalauxA c@(_,s) t0 t1 = tequalAbsTermA c (mkAbsTerm s t0) (mkAbsTerm s t1)

tequalAbsTermA :: Ctx t -> AbsTerm t -> AbsTerm t -> EqResAM t
tequalAbsTermA c (sts,es) (sts’,es’) = seqA (stermsEqualA c sts sts’) $
extsEqualA c es es’

-- all st in sts, st’ in sts’. st = st’
stermsEqualA :: Ctx t -> Set (STerm t) -> Set (STerm t) -> EqResAM t
stermsEqualA c sts sts’ = Set.foldl (\ res st ->

258 semantics in haskell

seqA res $ stermsAllEqualA c st sts)
returnA sts

stermsAllEqualA :: Ctx t -> STerm t -> Set (STerm t) -> EqResAM t
stermsAllEqualA c st sts = Set.foldl (\ res st’ ->

seqA res $ stermequal c st st’)
returnA sts

-- all ed in dom(es). es(ed) = es’(ed)
-- and all ed’ in dom(es’) \ dom(es). es’(ed’) =
extsEqualA :: Ctx t -> ExtMap t -> ExtMap t -> EqResAM t
extsEqualA c es es’ = seqA (extsContainedA c es es’)

(\ d ps -> if Map.keysSet es == Map.keysSet es’ then
returnA d ps

else failA d)

extsContainedA :: Ctx t -> ExtMap t -> ExtMap t -> EqResAM t
extsContainedA c es es’ = Map.foldlWithKey (\ res ed v ->

seqA res $ \ d ps ->
case Map.lookup ed es’ of
Just v’ -> equivA ed c v v’ d ps
Nothing -> failA d)

returnA es

atermequalA :: Ctx t -> ATerm t -> ATerm t -> EqResAM t
atermequalA c a0 a1 d ps
| Set.member pair ps = returnA d ps
| otherwise = case (a0,a1) of
(ASTerm s0, ASTerm s1) -> stermequal c s0 s1 d ps’
(AEA ed v, AEA ed’ v’) -> if ed == ed’ then

equivA ed c v v’ d ps’
else
failA d

_ -> failA d
where pair = (a0,a1)

ps’ = Set.insert pair ps

stermequal :: Ctx t -> STerm t -> STerm t -> EqResAM t
stermequal c@(_,s@(StoreHat _ cnt)) st0 st1 d ps
| Set.member pair ps = returnA d ps
| otherwise =
case (st0,st1) of
(QA a0 _ Identity, QA a1 _ Identity) -> if a0 == a1 then

case (cnt ! a0) of
Cinf -> May ps
_ -> returnA d ps

else bad
(VA n0 ts0, VA n1 ts1) -> if n0 == n1 then

eqva c ts0 ts1 d ps
else bad

(QA a0 _ Structural, _) -> (withResolveAddrA c a0 $ \ at0 ->
atermequalA c at0 (ASTerm st1)) d ps

(_, QA a1 _ Structural) -> (withResolveAddrA c a1 $ \ at1 ->
atermequalA c at1 (ASTerm st0)) d ps

_ -> bad
where pair = (ASTerm st0, ASTerm st1)

semantics in haskell 259

ps’ = Set.insert pair ps
bad = Unequal (Set.singleton d)

withResolveAddrA :: Ctx t -> AddrA -> (ATerm t -> EqResAM t) -> EqResAM t
withResolveAddrA c@(_,(StoreHat h cnt)) a f = \ d ps ->
case Map.lookup a d of
Just st -> f st d ps
_ -> case Map.lookup a cnt of
Just Cinf -> let (sts,es) = (h ! a) in
let persts = Set.foldl (\ acc st ->

seqA acc (f $ ASTerm st)) returnA sts in
Map.foldlWithKey (\ acc ed v ->

seqA acc (f $ AEA ed v)) persts es d ps
_ -> let (sts,es) = h ! a in
let persts = Set.foldl

(\ acc st ->
seqA acc $ \ d’ ->
f (ASTerm st) (Map.insert a (ASTerm st) d’))

returnA sts in
Map.foldlWithKey (\ acc ed v -> seqA acc $ \ d’ ->

f (AEA ed v) (Map.insert a (AEA ed v) d’))
persts es d ps

eqva :: Ctx t -> [TermA t] -> [TermA t] -> EqResAM t
eqva s [] [] = returnA
eqva s (t0:ts0) (t1:ts1) = seqA (tequalauxA s t0 t1)

(eqva s ts0 ts1)
eqva _ _ _ = \ d ps -> failA d

--
-- End abstract term equality without splitting
--

--
-- Equality result with join for splitting equality
--

-- decide all a in dom(d). d(a) <= d’(a)
refinementLess :: Ctx t -> Refinement t -> Refinement t -> Bool
refinementLess s d d’ = Map.foldWithKey (\ addr t acc ->

acc &&
case Map.lookup addr d’ of
Just t’ -> atermLessTop s t t’
Nothing -> False)

True d

strictlyLessInSet s d ds =
Set.fold (\ d’ acc ->

acc || (refinementLess s d d’ && (not $ refinementLess s d’ d)))
False ds

-- Is d strictly less than some d’ in dom(dps)? If so, return dps(d’)
strictlyLessInKeys s d dps =
Map.foldWithKey (\ d’ ps acc ->

if isJust acc then
acc

else if (refinementLess s d d’ &&
(not $ refinementLess s d’ d)) then

260 semantics in haskell

Just ps
else Nothing)

Nothing dps

overlap s d d’ = refinementLess s d d’ || refinementLess s d’ d
overlapInSet s d ds = Set.fold (\ d’ acc -> acc || overlap s d d’) False ds
overlapInMap s d dps = Map.foldWithKey (\ d’ _ acc -> acc || overlap s d d’)

False dps
bigoverlap s dps ds = Map.foldWithKey (\ d _ acc -> acc || overlapInSet s d ds)

False dps

data EqResS t a = Both (Map (Refinement t) (Set a))
(Refinements t)

| MayS (Set a) deriving (Show)
type EqResM t a = Refinement t -> (Set a) -> EqResS t a

joinS :: (Ord a) => Ctx t -> EqResS t a -> EqResS t a -> EqResS t a
joinS s (Both dps _) (MayS ps) = MayS $ Set.union ps $ squash dps
joinS s (MayS ps) (MayS ps’) = MayS $ Set.union ps ps’
joinS s (Both dps ds) (Both dps’ ds’) =
if bigoverlap s dps ds’ || bigoverlap s dps’ ds then
MayS $ Set.union (squash dps) (squash dps’)

else
Both (mergeKeysStrictlySmaller s dps dps’)
(joinCut s ds ds’)

-- symmetric cases
joinS s (MayS ps) (Both dps _) = MayS $ Set.union ps $ squash dps

joinCut s ds ds’ = removeAllStrictlySmaller s (Set.union ds ds’)
-- Keep only the maximal refinements in a set.
-- { d : all d’ in ds. overlap s d d’ => refinementLess s d’ d }
removeAllStrictlySmaller s ds = Set.fold (\ d acc ->

if strictlyLessInSet s d ds then
acc

else Set.insert d acc) Set.empty ds

-- Keep only the maximal refinements in an equality justification,
-- but union togetherthe term pairs of comparable refinements.
-- Maintain invariant that domains are incomparable.
mergeKeysStrictlySmaller s dps dps’ = combineSmaller s keyCut

(Map.unionWith Set.union dps dps’)
where keyCut = joinCut s (Map.keysSet dps) (Map.keysSet dps’)

combineSmaller s ks dps = Set.fold
(\ d acc ->
case strictlyLessInKeys s d dps of
Just ps’ ->
Map.insert d (Set.union ps’ $

fromJust $ Map.lookup d dps) acc
Nothing -> Map.insert d

(fromJust $ Map.lookup d dps) acc)
Map.empty ks

weakenS :: (Ord a) => EqResS t a -> EqResS t a
weakenS eq@(Both dps ds) = if Map.null dps then eq else MayS $ squash dps
weakenS eq = eq

failS d = Both Map.empty (Set.singleton d)

semantics in haskell 261

badS ds = Both Map.empty ds

returnS :: Refinement t -> (Set a) -> EqResS t a
returnS d ps = Both (Map.singleton d ps) Set.empty

mustS dps = Both dps Set.empty

bindSM :: (Ord a) => Ctx t -> EqResM t a -> EqResM t a -> EqResM t a
bindSM c r f = \ d ps ->
case r d ps of
MayS ps -> weakenS $ f d ps
eq@(Both dps ds) ->
case Map.toList dps of
[] -> eq -- no equalities. Stay failed.
((d,ps):rps) -> joinS c (badS ds)

$ Prelude.foldl (\ acc (d’,ps’) ->
joinS c acc $ f d’ ps’)

(f d ps) rps

withResolveAddr :: (Ord a) => Ctx t -> AddrA -> (ATerm t -> EqResM t a)
-> EqResM t a

withResolveAddr c@(_,(StoreHat h cnt)) a f = \ d ps ->
case Map.lookup a d of
Just st -> f st d ps
_ -> case Map.lookup a cnt of
Just Cinf -> let (sts,es) = (h ! a) in
let persts = Set.foldl (\ acc st ->

bindSM c acc (f $ ASTerm st)) returnS sts in
Map.foldlWithKey (\ acc ed v ->

bindSM c acc (f $ AEA ed v)) persts es d ps
_ -> let (sts,es) = h ! a in
let persts = Set.foldl

(\ acc st ->
bindSM c acc $ \ d’ ->
f (ASTerm st) (Map.insert a (ASTerm st) d’))

returnS sts in
Map.foldlWithKey (\ acc ed v -> bindSM c acc $ \ d’ ->

f (AEA ed v) (Map.insert a (AEA ed v) d’))
persts es d ps

-- Abstract term equality with splitting

data EqResTopS t =
EqualS | UnequalS | MayTS | EqSplit (Refinements t) (Refinements t)

tequalS :: Ctx t -> Refinement t -> TermA t
-> TermA t -> EqResTopS t

tequalS c d t0 t1 = case tequalauxS c t0 t1 d Set.empty of
Both de ds -> if Map.null de then

UnequalS
else if Set.null ds then

EqualS
else EqSplit (Map.keysSet de) ds

MayS _ -> MayTS

tequalauxS :: Ctx t -> TermA t -> TermA t
-> EqResM t (ATerm t, ATerm t)

262 semantics in haskell

tequalauxS c@(_,s) t0 t1 = tequalAbsTermS c (mkAbsTerm s t0) (mkAbsTerm s t1)

tequalAbsTermS :: Ctx t -> AbsTerm t -> AbsTerm t
-> EqResM t (ATerm t, ATerm t)

tequalAbsTermS c (sts,es) (sts’,es’) = bindSM c (stermsEqualS c sts sts’) $
extsEqualS c es es’

-- all st in sts, st’ in sts’. st = st’
stermsEqualS :: Ctx t -> (Set (STerm t)) -> (Set (STerm t))

-> EqResM t (ATerm t, ATerm t)
stermsEqualS c sts sts’ = Set.foldl (\ res st ->

bindSM c res $ stermsAllEqualS c st sts)
returnS sts

stermsAllEqualS :: Ctx t -> STerm t -> Set (STerm t)
-> EqResM t (ATerm t, ATerm t)

stermsAllEqualS c st sts = Set.foldl (\ res st’ ->
bindSM c res $ stermequalS c st st’)

returnS sts

-- all ed in dom(es). es(ed) = es’(ed)
-- and all ed’ in dom(es’) \ dom(es). es’(ed’) =
extsEqualS :: Ctx t -> ExtMap t -> ExtMap t -> EqResM t (ATerm t, ATerm t)
extsEqualS c es es’ = bindSM c (extsContainedS c es es’)

(\ d ps -> if Map.keysSet es == Map.keysSet es’ then
returnS d ps

else failS d)

extsContainedS :: Ctx t -> ExtMap t -> ExtMap t
-> EqResM t (ATerm t, ATerm t)

extsContainedS c es es’ = Map.foldlWithKey (\ res ed v ->
bindSM c res $ \ d ps ->
case Map.lookup ed es’ of
Just v’ -> equivS ed c v v’ d ps
Nothing -> failS d)

returnS es

atermequalS :: Ctx t -> ATerm t -> ATerm t -> EqResM t (ATerm t, ATerm t)
atermequalS c a0 a1 d ps
| Set.member pair ps = returnS d ps
| otherwise = case (a0,a1) of
(ASTerm s0, ASTerm s1) -> stermequalS c s0 s1 d ps’
(AEA ed v, AEA ed’ v’) -> if ed == ed’ then

equivS ed c v v’ d ps’
else
failS d

_ -> failS d
where pair = (a0,a1)

ps’ = Set.insert pair ps

stermequalS :: Ctx t -> STerm t -> STerm t -> EqResM t (ATerm t, ATerm t)
stermequalS c@(_,(StoreHat h cnt)) (QA a0 _ Identity) (QA a1 _ Identity)
| a0 == a1 = \ d ps -> case (cnt ! a0) of
Cinf -> MayS ps
_ -> returnS d ps

stermequalS c (VA n0 ts0) (VA n1 ts1) | n0 == n1 = eqvaS c ts0 ts1

semantics in haskell 263

stermequalS c (QA a0 _ Structural) st1 = withResolveAddr c a0
(atermequalS c $ ASTerm st1)

stermequalS c st0 (QA a1 _ Structural) = withResolveAddr c a1
(atermequalS c $ ASTerm st0)

stermequalS _ _ _ = \ d _ -> failS d

eqvaS :: Ctx t -> [TermA t] -> [TermA t] -> EqResM t (ATerm t, ATerm t)
eqvaS c [] [] = returnS
eqvaS c (t0:ts0) (t1:ts1) = bindSM c (tequalauxS c t0 t1) $ eqvaS c ts0 ts1
eqvaS _ _ _ = \ d ps -> failS d

-- Combine weak finds into a single proof.
forEachRefinement :: Refinements t -> (Refinement t -> Maybe (PairsHat t))

-> Maybe (PairsHat t)
forEachRefinement ds f =
Set.fold (\ d acc ->

case f d of
Just ps -> case acc of
Just ps’ -> Just (Set.union ps ps’)
Nothing -> Just ps

Nothing -> acc)
Nothing ds

findWeak :: Ctx t -> Refinement t -> TermA t -> [(PairsHat t, TermA t)]
-> Maybe (PairsHat t)

findWeak s d v [] = Nothing
findWeak s d v ((ps,v’):pvs) =
case tequalauxS s v v’ d ps of -- XXX should be guardS
Both dps ds -> if Map.null dps then

findWeak s d v pvs
else Just (squash dps)

MayS ps -> Just ps

--
-- Pattern matching
--
newtype MVariable = MVariable String deriving (Eq,Ord,Show)
data Pattern t =
PName MVariable (Pattern t)
| PV Name [Pattern t]
| PQ MM EM
| PExt (ExternalDescriptor t)
| PWild deriving (Show)

newtype MEnvC = MEnvC (Map MVariable TermC)
newtype MEnvA t = MEnvA (Map MVariable (TermA t))

deriving (Eq,Ord,Show)

type MResC = Maybe MEnvC

matchC :: Store -> Pattern t -> TermC -> MEnvC -> MResC
matchC s (PName x PWild) t me@(MEnvC env) =
case Map.lookup x env of
Nothing -> case t of
QC a mm _ ->
case mm of
Explicit -> Just $ MEnvC $ Map.insert x t env
Implicit Delay -> Just $ MEnvC $ Map.insert x (DC a) env

264 semantics in haskell

Implicit _ -> Just $ MEnvC $ Map.insert x (s ! a) env
_ -> Just $ MEnvC $ Map.insert x t env

Just t’ -> if tequalC s t t’ then Just me else Nothing
matchC s (PName x p) t me@(MEnvC env) =
case Map.lookup x env of
Nothing -> matchC s p t $ MEnvC $ Map.insert x t env
Just t’ -> if tequalC s t t’ then matchC s p t me else Nothing

matchC s PWild t env = Just env
matchC s (PQ mm em) t@(QC _ mm’ em’) env | mm == mm’ && em == em’ = Just env
matchC s (PV n ps) (VC n’ ts) env | n == n’ = matchCmany s ps ts env

matchCmany :: Store -> [Pattern t] -> [TermC] -> MEnvC -> MResC
matchCmany s [] [] env = Just env
matchCmany s (p:ps) (t:ts) me = do env’ <- matchC s p t me

matchCmany s ps ts me
matchCmany _ _ _ _ = Nothing

--
-- Expressions
--
newtype Tag = Tag String deriving (Show)
data Expr t =
ERef MVariable
| EVariant Name Tag [Expr t]
| EAlloc Tag
| ELet [BU t] (Expr t)
| ECall Name [Expr t]
| ELookup (Expr t) LM deriving (Show)

data BU t = Where (Pattern t) (Expr t)
| Update (Expr t) (Expr t)
deriving (Show)

data Rule t = Rule (Pattern t) (Expr t) [BU t]
deriving (Show)

data StuckFail a = Stuck | Fail | Fires(a)
newtype StuckFailT m a = StuckFailT { runStuckFailT :: m (StuckFail a) }
bindSFT :: (Monad m) => (StuckFailT m a) -> (a -> StuckFailT m b)

-> StuckFailT m b
bindSFT x f = StuckFailT $ runStuckFailT x >>= \ sf -> case sf of
Stuck -> return Stuck
Fail -> return Fail
Fires y -> runStuckFailT (f y)

returnSFT :: (Monad m) => a -> StuckFailT m a
returnSFT a = StuckFailT $ return $ Fires a

failSFT :: (Monad m) => t -> StuckFailT m b
failSFT _ = StuckFailT $ return Stuck

instance (Monad m) => Monad (StuckFailT m) where
return = returnSFT
(>>=) = bindSFT
fail = failSFT

instance MonadTrans StuckFailT where
lift m = StuckFailT (Fires ‘liftM‘ m)

semantics in haskell 265

instance (MonadState s m) => MonadState s (StuckFailT m) where
get = lift get
put k = lift (put k)

newtype EvRes a = ER {
runER :: MaybeT (State Store) a
} deriving (Monad, MonadState Store)

newtype RuleRes a = RR {
runRR :: StuckFailT (State Store) a
} deriving (Monad, MonadState Store)

data Metafunction t =
UserMF [Rule t]
| ExternalMF ([TermC] -> EvRes TermC)

data Semantics t = Sem {
rules :: [Rule t],
metafunctions :: Map Name (Metafunction t),
alloc :: Store -> Tag -> AddrC,
mkV :: Name -> Tag -> [TermC] -> EvRes TermC
}

maybeMT :: Maybe a -> (() -> b) -> (a -> b) -> b
maybeMT (Just a) fail good = good a
maybeMT Nothing fail good = fail ()

ev :: Semantics t -> Expr t -> MEnvC -> EvRes TermC
ev s (ERef x) (MEnvC env) = case Map.lookup x env of
Just t -> ER $ returnMT t
Nothing -> ER $ failMT ()

ev s (EVariant n tag es) me = do ts <- evmany s es me
mkV s n tag ts

ev s (EAlloc tag) me = do { st <- get;
ER $ returnMT $
QC (alloc s st tag) Explicit Identity }

ev s (ELet bus e) me =
do store <- get

case runStateT (runStuckFailT $ runRR $ evbus s bus me) store of
Fid.Identity (Fires me’, store’) ->
do put store’;

ev s e me’
Fid.Identity (_, _) -> ER $ failMT ()

ev s (ECall f es) me = do ts <- evmany s es me
evcall s f ts

ev s (ELookup e lm) me = do t <- ev s e me
case t of
QC a Explicit _ ->
do { st <- get ;

ER $ returnMT $ st ! a }
_ -> ER $ failMT ()

evmany :: Semantics t -> [Expr t] -> MEnvC -> EvRes [TermC]
evmany s [] me = ER $ returnMT []

266 semantics in haskell

evmany s (e:es) me = do t <- ev s e me
ts <- evmany s es me
ER $ returnMT $ t:ts

evbu :: Semantics t -> BU t -> MEnvC -> RuleRes MEnvC
evbu s (Where p e) me =
do store <- get

case runStateT (runMaybeT $ runER $ ev s e me) store of
Fid.Identity (Just t, store’) ->
case matchC store’ p t me of
-- side-effects happen only on success
Just me’ -> do { put store’;

RR $ returnSFT me’ }
Nothing -> RR $ StuckFailT $ return Fail

_ -> RR $ failSFT ()
evbu s (Update ea et) me =
do store <- get

case runStateT (runMaybeT $ runER $ ev s ea me) store of
Fid.Identity (Just ta, store’) ->
case ta of
QC a Explicit _ ->
case runStateT (runMaybeT $ runER $ ev s et me) store’ of
Fid.Identity (Just tt, store’’) ->
do { put (Map.insert a tt store’’);

return me }
_ -> RR $ failSFT ()

_ -> RR $ failSFT ()
Fid.Identity (Nothing, _) -> RR $ failSFT ()

evbus :: Semantics t -> [BU t] -> MEnvC -> RuleRes MEnvC
evbus s [] me = RR $ returnSFT me
evbus s (bu:bus) me = evbu s bu me >>= evbus s bus

runEvRRes :: RuleRes TermC -> Store -> (StuckFail TermC, Store)
runEvRRes ev store = let (Fid.Identity p) =

runStateT (runStuckFailT $ runRR $ ev) store in
p

evcall :: Semantics t -> Name -> [TermC] -> EvRes TermC
evcall s f ts = case Map.lookup f $ metafunctions s of
Just mf ->
case mf of
UserMF rs ->
do { store <- get;

case runEvRRes (runInOrder s rs (VC f ts)) store of
(Fires t, store’) -> do { put store’ ; ER $ returnMT t }
_ -> ER $ failMT () }

ExternalMF f -> f ts
Nothing -> ER $ failMT ()

runRule :: Semantics t -> Rule t -> TermC -> RuleRes TermC
runRule s (Rule p e bus) t =
do st <- get

case matchC st p t (MEnvC Map.empty) of
Just env ->
do me <- evbus s bus env

semantics in haskell 267

store <- get
case runStateT (runMaybeT $ runER $ ev s e me) store of
Fid.Identity (Just t, store’) ->
do { put store’; RR $ returnSFT t }

-- evaluation got stuck, so the rule is stuck
_ -> RR $ failSFT ()

-- Rule didn’t match. Fails
Nothing -> RR $ StuckFailT $ return Fail

runInOrder :: Semantics t -> [Rule t] -> TermC -> RuleRes TermC
runInOrder s [] t = RR $ failSFT ()
runInOrder s (r:rs) t =
do store <- get

case runStateT (runStuckFailT $ runRR $ runRule s r t) store of
Fid.Identity (Fires t’, store’) ->
do { put store’ ; RR $ returnSFT t’ }

Fid.Identity (Stuck, store’) -> RR $ failSFT ()
Fid.Identity (Fail, store’) -> RR $ StuckFailT $ return Fail

--
-- Abstract evaluation
--
data Change t = Strong (TermA t)

| Weak (TermA t)
| Reset (TermA t)
deriving (Eq,Ord,Show)

newtype StoreDelta t = StoreDelta (Map AddrA (Change t))
deriving (Eq,Ord,Show)

atermToTerm :: ATerm t -> TermA t
atermToTerm (ASTerm st) = PreTerm $ STerm st
atermToTerm (AEA ed v) = PreTerm $ EA ed v

applyRefinement :: StoreHat t -> Refinement t -> Set AddrA -> StoreHat t
applyRefinement (StoreHat h cnt) d disregard = StoreHat h’’ cnt
where h’’ = Map.foldWithKey

(\ a at h’ ->
if Set.member a disregard then
h’

else case at of
ASTerm st -> Map.insert a (Set.singleton st, Map.empty) h’
AEA ed v -> Map.insert a (Set.empty, Map.singleton ed v) h’)

h d

insertTerm :: AddrA -> TermA t -> HeapHat t -> HeapHat t
insertTerm a (PreTerm (DA a’)) h = case Map.lookup a’ h of
Just abs -> Map.insert a abs h
Nothing -> error ("Oh, bugger: " ++ show a’)

insertTerm a (PreTerm (STerm st)) h = Map.insert a
(Set.singleton st, Map.empty) h

insertTerm a (PreTerm (EA ed v)) h = Map.insert a
(Set.empty, Map.singleton ed v) h

insertTerm a (TAbs abs) h = Map.insert a abs h

applyDelta :: Ctx t -> StoreDelta t -> StoreHat t
applyDelta c@(_,s@(StoreHat h cnt)) (StoreDelta pars) =

268 semantics in haskell

Map.foldWithKey
(\ a ch s’@(StoreHat h’ cnt’) ->
case ch of
Strong t -> StoreHat (insertTerm a t h’) cnt’
Weak t -> case Map.lookup a h of
-- XXX: Can we join terms through addresses that might not be set yet?
Just abs -> StoreHat (insertTerm a (joinTermTop c t (TAbs abs)) h’) cnt’
Nothing -> error ("Weak must be mapped: " ++ show a)

Reset t -> StoreHat (insertTerm a t h’) (Map.insert a Cinf cnt’))
s pars

applychange :: Ctx t -> Refinement t -> StoreDelta t -> StoreHat t
applychange c d pars@(StoreDelta sd) = applyRefinement (applyDelta c pars) d

(Map.keysSet sd)
-- first apply changes, then refine non-changed addresses.

type ResS t a = EqResS t (a, StoreDelta t)
data RResS t a =
FSU {fires :: Map (Refinement t) (Set (a, StoreDelta t)),

stuck :: Refinements t,
unapplicable :: Refinements t}

| MayF (Set (a, StoreDelta t))

data MetafunctionHat t =
UserAMF [Rule t]
| ExternalAMF ([TermA t] -> EvResS t (TermA t))

data StateHat t = StateHat (TermA t) (StoreHat t) t deriving (Eq,Ord,Show)

data SemanticsHat t = SemHat {
rulesH :: [Rule t],
metafunctionsH :: Map Name (MetafunctionHat t),
allocH :: Tag -> SRSD t AddrA,
mkVH :: Name -> Tag -> [TermA t] -> EvResS t (TermA t),
tickH :: MEnvA t -> SRSD t t
}

newtype ResM t a = ResM (SemanticsHat t -> StateHat t -> Refinement t
-> StoreDelta t -> ResS t a)

newtype RResM t a = RResM (SemanticsHat t -> StateHat t -> Refinement t
-> StoreDelta t -> RResS t a)

weakenRS :: (Ord a) => ResS t a -> ResS t a
weakenRS eq@(Both r d) = if Map.null r then

eq
else MayS $ squash r

weakenRS r = r

joinResS :: (Ord a) => Ctx t -> ResS t a -> ResS t a -> ResS t a
joinResS s (Both dps _) (MayS ps) = MayS $ Set.union ps $ squash dps
joinResS s (MayS ps) (MayS ps’) = MayS $ Set.union ps ps’
joinResS s (Both dps ds) (Both dps’ ds’) =
if bigoverlap s dps ds’ || bigoverlap s dps’ ds then
MayS $ Set.union (squash dps) (squash dps’)

else
Both (mergeKeysStrictlySmaller s dps dps’)
(joinCut s ds ds’)

semantics in haskell 269

-- symmetric cases
joinResS s (MayS ps) (Both dps _) = MayS $ Set.union ps $ squash dps

joinRResS :: (Ord a) => Ctx t -> RResS t a -> RResS t a -> RResS t a
joinRResS s (FSU dps _ _) (MayF ps) = MayF $ Set.union ps $ squash dps
joinRResS s (MayF ps) (MayF ps’) = MayF $ Set.union ps ps’
joinRResS s (FSU f st u) (FSU f’ st’ u’) =
if bigoverlap s f st’ || bigoverlap s f u’

|| bigoverlap s f’ st || bigoverlap s f’ u then
MayF $ Set.union (squash f) (squash f’)

else
FSU {fires=mergeKeysStrictlySmaller s f f’,

stuck=joinCut s st st’,
unapplicable=joinCut s u u’}

-- symmetric cases
joinRResS s (MayF ps) (FSU dps _ _) = MayF $ Set.union ps $ squash dps

--
-- Standard ResM monad actions
--

returnResAux :: (Ord a) => a -> Refinement t -> StoreDelta t -> ResS t a
returnResAux a d pars =
Both (Map.singleton d (Set.singleton (a,pars))) Set.empty

returnRes :: (Ord a) => a -> ResM t a
returnRes a = ResM $ \ _ w d pars -> returnResAux a d pars

failRes :: (Ord a) => u -> ResM t a
failRes _ = ResM $ \ _ w d pars -> Both Map.empty (Set.singleton d)

bindRes :: (Ord a, Ord b) => ResM t a -> (a -> ResM t b) -> ResM t b
bindRes (ResM r) f = ResM $ \ sem w@(StateHat _ s _) d pars ->
case r sem w d pars of
Both dts ds -> case Map.toList dts of
[] -> Both Map.empty ds
(d’,as):das ->
let eachas d as =

case Set.toList as of
[] -> error ("Bad result at " ++ show d’)
(a,pars’):as’ ->
Prelude.foldl (\ res (a,pars’) ->

joinResS (w,s) res (unResM (f a) sem w d pars’))
(unResM (f a) sem w d pars’) as’

in joinResS (w,s) (Both Map.empty ds) $
Prelude.foldl (\ res (d’,as’) ->

joinResS (w,s) res $ eachas d’ as’)
(eachas d’ as) das

MayS as -> case Set.toList as of
[] -> error ("Bad result at " ++ show d)
(a,pars’):as’ ->
Prelude.foldl (\ res (a,pars’) ->

joinResS (w,s) res (unResM (f a) sem w d pars’))
(unResM (f a) sem w d pars’) as’

--
-- Standard RResM monad actions

270 semantics in haskell

--

returnRResAux :: (Ord a) => a -> Refinement t -> StoreDelta t -> RResS t a
returnRResAux a d pars = FSU {fires = Map.singleton d (Set.singleton (a,pars)),

stuck = Set.empty,
unapplicable = Set.empty}

returnRRes :: (Ord a) => a -> RResM t a
returnRRes a = RResM $ \ _ w d pars -> returnRResAux a d pars

failRRes :: (Ord a) => u -> RResM t a
failRRes _ = RResM $ \ _ w d pars -> FSU {fires = Map.empty,

stuck = Set.empty,
unapplicable = (Set.singleton d) }

bindRRes :: (Ord a, Ord b) => RResM t a -> (a -> RResM t b)
-> RResM t b

bindRRes (RResM r) f = RResM $ \ sem w@(StateHat _ s _) d pars ->
case r sem w d pars of
FSU fires stuck unapplicable -> case Map.toList fires of
[] -> FSU {fires=Map.empty, stuck= stuck, unapplicable=unapplicable}
(d’,as):das ->
let eachas d as =

case Set.toList as of
[] -> error ("Bad rule result at " ++ show d’)
(a,pars’):as’ ->
Prelude.foldl
(\ res (a,pars’) ->
joinRResS (w,s) res (unRResM (f a) sem w d pars’))

(unRResM (f a) sem w d pars’) as’
in Prelude.foldl (\ res (d’,as’) ->

joinRResS (w,s) res $ eachas d’ as’)
(eachas d’ as) das

MayF as -> case Set.toList as of
[] -> error ("Bad rule result at " ++ show d)
(a,pars’):as’ ->
Prelude.foldl (\ res (a,pars’) ->

joinRResS (w,s) res (unRResM (f a) sem w d pars’))
(unRResM (f a) sem w d pars’) as’

--
-- Loewering operations
--

unResM :: ResM t a -> SemanticsHat t -> StateHat t ->
Refinement t -> StoreDelta t -> ResS t a

unResM (ResM f) sem w d pars = f sem w d pars
runEvResS = unResM . lowerResM

unRResM :: RResM t a -> SemanticsHat t -> StateHat t -> Refinement t ->
StoreDelta t -> RResS t a

unRResM (RResM f) sem w d pars = f sem w d pars
runEvRResS = unRResM . lowerRResM

ruleToExpr :: (Ord a) => EvRResS t a -> EvResS t a
ruleToExpr r = liftNM $ ResM $ \ sem w@(StateHat _ s _) d pars ->
case runEvRResS r sem w d pars of

semantics in haskell 271

FSU fires stuck unapplicable ->
Both fires (joinCut (w,s) stuck unapplicable)

MayF e -> MayS e

exprToRule :: (Ord a) => EvResS t a -> EvRResS t a
exprToRule r = liftNM $ RResM $ \ sem w d pars ->
case runEvResS r sem w d pars of
Both dts ds -> FSU {fires=dts, stuck=ds, unapplicable=Set.empty}
MayS e -> MayF e

type EvResS t a = NM Ord (ResM t) a
type EvRResS t a = NM Ord (RResM t) a
lowerResM :: (Ord a) => EvResS t a -> ResM t a
lowerResM = lowerNM returnRes bindRes

lowerRResM :: (Ord a) => EvRResS t a -> RResM t a
lowerRResM = lowerNM returnRRes bindRRes

--
-- Special ResM monad actions
--
-- Update the store with the appropriate strength.
updateRes :: (Ord a) => AddrA -> TermA t -> EvRResS t a

-> EvRResS t a
updateRes addr t next = liftNM $ RResM $ \ sem w d pars ->
let (StateHat _ s@(StoreHat h cnt) _) = w in
let (StoreDelta sd) = pars in
-- Already changed?
case Map.lookup addr sd of
Just ch ->
runEvRResS next sem w d $ StoreDelta $
case ch of
Strong _ -> Map.insert addr (Strong $ unSRSD (demand t) w d pars) sd
Weak t’ -> Map.insert addr (Weak $ joinTermTop (w,s) t t’) sd
Reset t’ -> Map.insert addr (Reset $ joinTermTop (w,s) t t’) sd

Nothing -> runEvRResS next sem w d $ StoreDelta $ Map.insert addr
(case Map.lookup addr cnt of
-- Fresh. We can strongly update.
Just C1 -> Strong t
_ -> Weak t)

sd

-- No abstraction yet
makeVariant :: Name -> Tag -> [TermA t] -> EvResS t (TermA t)
makeVariant n tag ts = withSemantics (\ s -> mkVH s n tag ts)

bumpAddr :: (Ord a) => AddrA -> EvResS t a -> EvResS t a
bumpAddr a next = liftNM $ ResM $ \ sem w@(StateHat _ (StoreHat _ cnt) _)

d pars@(StoreDelta sd) ->
runEvResS next sem w d $ StoreDelta $
case Map.lookup a sd of
Just (Strong t) -> Map.insert a (Reset t) sd
Just ch -> sd -- already bumped. Just run
Nothing -> case Map.lookup a cnt of
Just _ -> Map.insert a (Weak termbot) sd
Nothing -> Map.insert a (Strong termbot) sd

272 semantics in haskell

allocA :: Tag -> EvResS t AddrA
allocA tag = withSemantics $ \ sem -> do addr <- liftSRSD $ allocH sem tag

bumpAddr addr $ return addr

tickA :: (Ord t) => MEnvA t -> EvRResS t t
tickA me = withSemantics’ $ \ sem -> liftSRSD’ $ tickH sem me

withStateHat :: (Ord a) => (StateHat t -> EvResS t a)
-> EvResS t a

withStateHat f = liftNM $ ResM $ \ sem w d pars -> runEvResS (f w) sem w d pars

withSemantics :: (Ord a) => (SemanticsHat t -> EvResS t a) -> EvResS t a
withSemantics f = liftNM $ ResM $ \ sem w d pars ->
runEvResS (f sem) sem w d pars

getRefinement :: EvResS t (Refinement t)
getRefinement = liftNM $ ResM $ \ _ w d pars -> returnResAux d d pars

chooseRefinement :: (Ord a) => Refinements t -> EvResS t a -> EvResS t a
chooseRefinement ds next =
case Set.toList ds of
[] -> error "Empty set of refinements"
d:ds’ -> liftNM $ ResM $ \ sem w@(StateHat _ s _) d pars ->
Prelude.foldl (\ res d ->

joinResS (w,s) res $ runEvResS next sem w d pars)
(runEvResS next sem w d pars) ds’

-- If term is abstract, join the results of function applied to each term.
appeach :: (Ord a) => (TermA t -> EvResS t a) -> (ATerm t -> Refinement t)

-> TermA t -> EvResS t a
appeach f upd t = liftNM $ ResM $ \ sem w@(StateHat _ s _) d pars ->
case unSRSD (demand t) w d pars of
TAbs (sts,es) ->
case Set.toList sts of
[] -> error ("Bad term: " ++ show t)
st:sts’ ->
let withsts =

Prelude.foldl
(\ res st ->
joinResS (w,s) res (runEvResS (f $ PreTerm $ STerm st)

sem w (upd $ ASTerm st) pars))
(runEvResS (f $ PreTerm $ STerm st) sem w d pars) sts’ in

Map.foldlWithKey (\ res ed v ->
joinResS (w,s) res
(runEvResS (f $ PreTerm $ EA ed v)
sem w (upd $ AEA ed v) pars))

withsts es
t -> runEvResS (f t) sem w d pars

-- Lookup and refine, if the lookup mode asks for it.
slookup :: (Ord a) => AddrA -> LM -> (TermA t -> EvResS t a) -> EvResS t a
slookup a Delay f = f (PreTerm $ DA a)
slookup a lm f = liftNM $ ResM $
\ sem w@(StateHat _ s@(StoreHat h cnt) _) d pars@(StoreDelta sd) ->
case Map.lookup a sd of
-- Already modified, so just use what we have here. Don’t do any refinement

semantics in haskell 273

Just ch ->
let t = case ch of

Strong t -> t
Reset t -> t
Weak t -> case Map.lookup a h of
Just abs -> let Fid.Identity (t,_) =

runStateT (joinAbsTermTerm (w,s) abs t)
Set.empty in

t
Nothing -> error ("Weak without mapping: " ++ show a)
in

case lm of
Resolve -> runEvResS (appeach f (\ _ -> d) t) sem w d pars
Deref -> runEvResS (f t) sem w d pars

Nothing ->
case Map.lookup a d of
-- Refined, so use what we have.
Just aterm -> runEvResS (f $ atermToTerm aterm) sem w d pars
Nothing ->
case Map.lookup a h of
Just abs ->
case lm of
Resolve ->
runEvResS (appeach f

(case Map.lookup a cnt of
Just C1 -> \ st -> Map.insert a st d
_ -> \ _ -> d) $ TAbs abs)

sem w d pars
Deref -> runEvResS (f (TAbs abs)) sem w d pars

Nothing -> error ("Dangling pointer: " ++ show a)

resolve :: TermA t -> EvResS t (TermA t)
resolve (TAbs (sts,es)) = liftNM $ ResM $ \ _ w d pars ->
Both (Map.foldlWithKey

(\ acc ed v ->
Map.insert d (Set.singleton (PreTerm $ EA ed v, pars)) acc)

(fromsts d pars) es)
Set.empty
where fromsts d pars = Map.singleton d $

Set.foldl (\ acc st ->
(Set.insert (PreTerm $ STerm st,pars) acc)
acc)

Set.empty sts
resolve (PreTerm (DA a)) = slookup a Resolve return
resolve (PreTerm (STerm (QA a (Implicit lm) _))) = slookup a lm return
resolve t = return t

--
-- Demand a term (no resolutions)

-- read-only view of ResM
newtype SRSD t a = SRSD (StateHat t -> Refinement t

-> StoreDelta t -> a)
unSRSD (SRSD f) w d pars = f w d pars
returnSRSD a = SRSD (\ _ _ _ -> a)
bindSRSD f g = SRSD $ \ w d pars -> unSRSD (g (unSRSD f w d pars)) w d pars
liftSRSD :: (Ord a) => SRSD t a -> EvResS t a

274 semantics in haskell

liftSRSD f = liftNM $ ResM $ \ _ w d pars ->
returnResAux (unSRSD f w d pars) d pars

liftSRSD’ :: (Ord a) => SRSD t a -> EvRResS t a
liftSRSD’ f = liftNM $ RResM $ \ _ w d pars ->
returnRResAux (unSRSD f w d pars) d pars

withSemantics’ :: (Ord a) => (SemanticsHat t -> EvRResS t a)
-> EvRResS t a

withSemantics’ f = liftNM $ RResM $ \ sem w d pars ->
unRResM (lowerRResM (f sem)) sem w d pars

instance Monad (SRSD t) where
return = returnSRSD
(>>=) = bindSRSD

demand :: TermA t -> SRSD t (TermA t)
demand (PreTerm (DA a)) = flatlookup a
demand (PreTerm (STerm st)) = demandSTerm st
demand t@(TAbs sts) = return t

demandSTerm :: STerm t -> SRSD t (TermA t)
demandSTerm (VA n ts) = do ts <- Prelude.mapM demand ts

return $ PreTerm $ STerm $ VA n ts
demandSTerm t@(QA a Explicit _) = return $ PreTerm $ STerm t
demandSTerm (QA a _ _) = flatlookup a

flatlookup :: AddrA -> SRSD t (TermA t)
flatlookup a = SRSD $
\ w@(StateHat _ s@(StoreHat h cnt) _) d pars@(StoreDelta sd) ->
case Map.lookup a sd of
Just ch ->
case ch of
Strong t -> t
Reset t -> t
Weak t -> case Map.lookup a h of
Just abs -> let Fid.Identity (t,_) =

runStateT (joinAbsTermTerm (w,s) abs t)
Set.empty in

t
Nothing -> t

Nothing ->
case Map.lookup a d of
Just aterm -> atermToTerm aterm
Nothing ->
case Map.lookup a h of
Just sts -> TAbs sts
Nothing -> error ("Dangling pointer: " ++ show a)

--
-- End demand
--

evS :: Expr t -> MEnvA t -> EvResS t (TermA t)
evS (ERef x) (MEnvA env) = case (Map.lookup x env) of
Just t -> liftNM $ returnRes t
Nothing -> error ("Unbound metavariable: " ++ show x)

semantics in haskell 275

evS (EVariant n tag es) env = (evMany es env) >>= makeVariant n tag
evS (EAlloc tag) env = do a <- withSemantics (\ s -> liftSRSD $ allocH s tag)

return $ PreTerm $ STerm $ QA a Explicit Identity
evS (ELet bus body) env = (ruleToExpr $ evBUsS bus env) >>= evS body
evS (ECall mf es) env = evMany es env >>= evMF mf
evS (ELookup e lm) env =
do t <- evS e env

t’ <- resolve t
case t’ of
PreTerm (STerm (QA a Explicit _)) -> slookup a lm return
_ -> liftNM $ failRes ()

evMany :: [Expr t] -> MEnvA t -> EvResS t [TermA t]
evMany [] env = return []
evMany (e:es) env = do t <- evS e env

ts <- evMany es env
return (t:ts)

evBUS :: BU t -> MEnvA t -> EvRResS t (MEnvA t)
evBUS (Where p e) env = do t <- exprToRule $ evS e env

matchS p t env
evBUS (Update ea ev) env = do ta <- exprToRule $ evS ea env

ta’ <- exprToRule $ resolve ta
case ta’ of
PreTerm (STerm (QA a Explicit _)) ->
do tv <- exprToRule $ evS ev env

updateRes a tv (return env)

evBUsS :: [BU t] -> (MEnvA t) -> EvRResS t (MEnvA t)
evBUsS [] env = return env
evBUsS (bu:bus) env = evBUS bu env >>= evBUsS bus

data MatchResS t a = MFail | MSuccess (Set a)
| MSplit (Map (Refinement t) (Set a)) (Refinements t)
| MMay (Set a)

mresauxTomres :: (Ord a) => ResS t a -> StateHat t -> Refinement t
-> StoreDelta t -> RResS t a

mresauxTomres (MayS s) w d pars = MayF s
mresauxTomres r@(Both dts ds) w d pars =
if Map.null dts then
FSU {fires= Map.empty, stuck=Set.empty, unapplicable= Set.singleton d}

else if Set.null ds then
FSU {fires = Map.singleton d $ squash dts,

stuck =Set.empty,
unapplicable=Set.empty}

else FSU {fires = dts, unapplicable = ds, stuck = Set.empty}

matchS :: Pattern t -> TermA t -> MEnvA t -> EvRResS t (MEnvA t)
matchS p t env = liftNM $ RResM $ \ sem w d pars ->
mresauxTomres (runEvResS (matchSaux p t env) sem w d pars) w d pars

resolvable :: TermA t -> Bool
resolvable (PreTerm (DA _)) = True
resolvable (PreTerm (STerm (QA _ (Implicit _) _))) = True
resolvable (TAbs _) = True
resolvable _ = False

276 semantics in haskell

matchSaux :: Pattern t -> TermA t -> MEnvA t -> EvResS t (MEnvA t)
matchSaux PWild t me = return me
matchSaux (PName x p) t me@(MEnvA env) = case Map.lookup x env of
Just t’ -> withStateHat $ \ w ->
do d <- getRefinement

case tequalS (let (StateHat _ s _) = w in (w,s)) d t t’ of
EqualS -> matchSaux p t me
UnequalS -> liftNM $ failRes ()
EqSplit eqs neqs -> liftNM $ ResM $ \ sem w’ d’ pars ->
let (StateHat _ s’ _) = w in
joinResS (w’,s’) (Both Map.empty neqs) $
(runEvResS (chooseRefinement eqs

(matchSaux p t me)) sem w’ d’ pars)
MayTS -> liftNM $ ResM $ \ sem w’ d’ pars ->
weakenRS $ runEvResS (matchSaux p t me) sem w’ d’ pars

Nothing -> do t’ <- resolve t
matchSaux p t $ MEnvA $ Map.insert x t’ env

matchSaux (PV n ps) (PreTerm (STerm (VA n’ ts))) me
| n == n’ = matchMany ps ts me

matchSaux (PQ mm em) (PreTerm (STerm (QA _ mm’ em’))) me
| mm == mm’ && em == em’ = return me

matchSaux (PExt ed) (PreTerm (EA ed’ _)) me | ed == ed’ = return me
matchSaux p t me | resolvable t = do t’ <- resolve t

matchSaux p t’ me
matchSaux p t me = liftNM $ failRes ()

matchMany :: [Pattern t] -> [TermA t] -> MEnvA t -> EvResS t (MEnvA t)
matchMany [] [] me = return me
matchMany (p:ps) (t:ts) me = matchSaux p t me >>= matchMany ps ts
matchMany _ _ _ = liftNM $ failRes ()

evRuleS :: Rule t -> TermA t -> MEnvA t -> EvRResS t (TermA t)
evRuleS (Rule p e bus) t me = do me’ <- matchS p t me

me’’ <- evBUsS bus me’
exprToRule $ evS e me’’

maybefire :: (Ord a) => EvRResS t a -> EvResS t a -> EvResS t a
maybefire rres res =
liftNM $ ResM $ \ sem w@(StateHat _ s _) d pars ->
case runEvRResS rres sem w d pars of
FSU fires stuck unapplicable ->
if Set.null unapplicable then
Both fires stuck

else joinResS (w,s) (Both fires stuck) $
runEvResS (chooseRefinement unapplicable res) sem w d pars

applyInOrder :: [Rule t] -> TermA t -> MEnvA t -> EvResS t (TermA t)
applyInOrder [] t me = liftNM $ failRes ()
applyInOrder (r:rs) t me = maybefire (evRuleS r t me) (applyInOrder rs t me)

tset :: Ctx t -> [StateHat t] -> Refinement t
-> Set ((TermA t, t),StoreDelta t) -> [StateHat t]

tset c acc d tparss = Set.foldl (\ ws ((t,tk),pars) ->
(StateHat t (applychange c d pars) tk):ws)

acc tparss

semantics in haskell 277

finalize :: Ctx t -> RResS t (TermA t, t) -> [StateHat t]
finalize c (FSU fires _ _) = Map.foldlWithKey (tset c) [] fires
finalize c (MayF tparss) = tset c [] Map.empty tparss

evStepS :: (Ord t) => SemanticsHat t -> Rule t -> StateHat t -> [StateHat t]
evStepS sem (Rule p e bus) w@(StateHat term s tk) = finalize (w,s) $
runEvRResS (do me <- matchS p term (MEnvA Map.empty)

me’ <- evBUsS bus me
t’ <- exprToRule $ evS e me’
tk <- tickA me’
return (t’, tk))

sem w Map.empty (StoreDelta Map.empty)

evMF :: Name -> [TermA t] -> EvResS t (TermA t)
evMF mf ts = withSemantics $ \ s ->
case Map.lookup mf $ metafunctionsH s of
Just (UserAMF rs) -> applyInOrder rs (PreTerm (STerm (VA mf ts)))

(MEnvA Map.empty)
Just (ExternalAMF f) -> f ts
Nothing -> liftNM $ failRes ()

applyAll :: (Ord t) => SemanticsHat t -> [Rule t] -> StateHat t -> [StateHat t]
-> [StateHat t]

applyAll sem [] w next = next
applyAll sem (r:rs) w next = applyAll sem rs w (evStepS sem r w ++ next)

stepHat :: (Ord t) => SemanticsHat t -> StateHat t -> [StateHat t]
stepHat sem w = applyAll sem (rulesH sem) w []

stepUntilFinished :: (Ord t, Num a) => SemanticsHat t -> [(a, StateHat t)] ->
[StateHat t] -> a -> [StateHat t] -> [(a, StateHat t)]

-- If there are no identified steps, return the set of states we ended up at.
stepUntilFinished sem stuck [] steps [] = stuck
stepUntilFinished sem stuck next steps [] =
stepUntilFinished sem stuck [] (steps+1) next

stepUntilFinished sem stuck next steps (w:todo) =
case stepHat sem w of
[] -> stepUntilFinished sem ((steps,w):stuck) next steps todo
next’ -> stepUntilFinished sem stuck (next’++next) steps todo

runProgram :: (Ord t, Num a) => SemanticsHat t -> t -> TermA t
-> [(a,StateHat t)]

runProgram sem tk start = stepUntilFinished sem [] [] 0 [initial]
where initial = (StateHat start (StoreHat Map.empty Map.empty) tk)

	Colophon
	Dedication
	Abstract
	Acknowledgments

	1 Introduction and contributions
	1.1 My thesis
	1.2 Structure of the dissertation
	1.3 The case for abstract machines
	1.4 Previously published material

	Systematic constructions
	2 Abstracting abstract machines
	2.1 Standardizing non-standard semantics: alloc and tick
	2.1.1 The lambda calculus to the CESK*t machine

	2.2 Widening for polynomial complexity

	3 Engineering engineered semantics
	3.1 Overview
	3.2 Abstract interpretation of IF
	3.3 From machine semantics to baseline analyzer
	3.3.1 Static analysis as fixed-point computation
	3.3.2 Store widening
	3.3.3 Store-allocate all values

	3.4 Implementation techniques
	3.4.1 Timestamped frontier
	3.4.2 Locally log-based store deltas
	3.4.3 Lazy nondeterminism
	3.4.4 Abstract compilation
	3.4.5 Imperative, pre-allocated data structures

	3.5 Evaluation

	4 Pushdown analysis via relevant allocation
	4.1 Tradeoffs of approximation strength
	4.2 Refinement of AAM for exact stacks
	4.2.1 Correctness
	4.2.2 Engineered semantics for efficiency
	4.2.3 Remarks about cost

	4.3 Stack inspection and recursive metafunctions
	4.3.1 Case study for stack traversal: GC
	4.3.2 Case study analyzing security features: the CM machine

	4.4 Relaxing contexts for delimited continuations
	4.4.1 Case study of first-class control: shift and reset
	4.4.2 Reformulated with continuation stores
	4.4.3 Correctness

	4.5 Short-circuiting via ``summarization''

	Algorithmic Constructions
	5 A language for abstract machines
	5.1 Representing an abstract machine
	5.2 Discussion of the design space
	5.3 The grammar of patterns and rules
	5.4 Term equality
	5.5 Pattern matching
	5.6 Expression evaluation
	5.7 Running a machine

	6 A language for AAM
	6.1 Introduction
	6.2 Representing an abstract abstract machine
	6.3 Overview of running
	6.4 Store refinements
	6.5 Design motivation by example
	6.5.1 Overview of explicit versus implicit addresses
	6.5.2 Weak matching: rule ordering and prediction strength

	6.6 Externals and NDTerm
	6.7 Term Equality
	6.7.1 Abstract term equality
	6.7.2 Better than exact: Term equality with splitting
	6.7.3 Worthwhile splitting
	6.7.4 Abstract term equality with worthwhile splitting

	6.8 Pattern Matching
	6.9 Expression evaluation
	6.9.1 Representation of evaluation results
	6.9.2 The abstract interpretation monad
	6.9.3 Finishing the semantics of expression evaluation

	6.10 Combining it all
	6.11 Paths to abstraction

	7 Case study: temporal higher-order contracts
	7.1 Overview of temporal higher-order contracts
	7.1.1 DFM's sort example, revised
	7.1.2 Syntax of contracts
	7.1.3 File example

	7.2 Semantics
	7.2.1 DFM's semantics
	7.2.2 My semantics

	7.3 The semantics in Limp
	7.4 Evaluation

	8 Related work
	8.1 Engineering Engineered Semantics (Optimizing AAM)
	8.2 Pushdown Analysis
	8.3 Semantics of abstract machines
	8.3.1 Synthesizing correct analyses

	9 Conclusion and future work
	9.1 Future work

	Appendix
	Notational conventions
	1 Meta rules
	2 Data

	3 Conditionals
	4 Quantification and scope
	5 Lifting and ordering
	6 Lists
	7 Sets
	8 Records
	9 Functions
	OAAM supplementals
	0.1 IF with store-allocated results
	0.2 Store-allocated results with lazy nondeterminism
	0.3 Lazy nondeterminism with abstract compilation
	0.4 Widened abstract compilation
	0.5 Abstract compilation with store deltas
	0.6 Store deltas with timestamped store
	Pushdown supplementals
	1 Context congruence with inv
	Proofs for OAAM
	0.1 Soundness of lazy-nondeterminism
	0.2 Semantic equivalence with abstract compilation
	0.3 Soundness of widened abstract compilation
	0.4 Semantic equivalence with locally log-based store deltas
	0.5 Semantic equivalence of log-based updates to a timestamped store
	Proofs for pushdown
	1 Proofs for Section 4.2
	2 Proofs for Section 4.4

	3 Proofs for Section 4.5
	Proofs for AAM language
	1 Weak equality proofs
	1.1 Correctness

	2 Weak matching proofs
	3 Weak evaluation proofs

	Proofs for temporal contracts
	1 Denotations
	2 Derivatives

	Semantics in Haskell

