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Abstract interpreter

Allocator

Con: loses important control structure
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Who cares about continuations?

RESTful web applications
Event-driven programming
Cloud computing
Actors
Operating systems
(Game engines?)

I don't understand!



</motivation>
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Addr

heap[Addr ↦ { }]
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Heap-allocate recursion

s ↦ s' ŝ  ↦̂ ŝ '
〈code, heap, cont〉

cont : List[Activation-Frame]

cons :X -> Addr  -> List[X]

heap : Map[Addr, Set[Value]]

h[a ↦ v] h[a ↦ h(a) ∪ {v}]
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(λ (j)
(if (good-json? j)

(let ([r (f j)])
  (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

Contexts = [  ↦ {cont},  ↦ {cont}]
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What's really going on here?

AAM told us cons : X -> Addr -> List[X]

Are  just fancy addresses?

States are 〈code heap stack〉 and the stack is irrelevant

 is 〈code heap〉

h[〈c,h'〉 ↦ {cont}]

 are stored in a stratified heap: Contexts
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E[F[(shift k e)]] ↦ E[e{k := (λ (x) F[x])}]

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))

  k = (λ (x) (+ 2 x ))

(+ 10 (+ 40 (+ 2 (+ 2 3))))

57

#

now a function

run from here
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(if (good-json? j)

(let ([r (f j)])
  (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
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read-request uses non-blocking I/O

(define (read-request f)
  (shift k (evloop-until-evt
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Can we stratify like with Contexts?
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Of course not!

〈(shift k e), heap, 〉 produces heap(ka) ∋ (comp 〈c,a〉)

χ(a) ∋ h'

Well, now χ is relevant! Since χ closes the heap

 ≡ 〈c', h', χ'〉

χ(a) ∋ 〈h',χ'〉

χ and heap are mutually recursive! Can't stratify!



Squash it
Instead of χ ⊔ [a ↦ 〈h',χ'〉]

we do χ ⊔ χ' ⊔ [a ↦ {h'}]

⟦〈c',a〉⟧ = {cont ∈ Contexts(〈c',h',χ'〉) : h' ∈ χ(a), χ' ⊑ χ}
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r
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(λ (j)
(if (good-json? j)

(let ([r (f j)])
  (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

(define (read-request f)
  (shift k (evloop-until-evt

(read-request-evt f)
k)))

h = [ka ↦ {(comp 〈 ,a〉)},
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χ =  ⊔  ⊔ [a ↦ { }] ⊔ [a ↦ { }]
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Where do we stand?

 abstract languages and respect control

Want shift/reset in modular semantics

(what if (comp ) is )

Not all the heap is relevant [Stefan Staiger-Stӧhr diss]
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Delimit computations by relevant state

Squash abstracted relevance objects

Break cycles in state space with addresses

Thank you


