
Abstracting Abstract Control
J. Ian Johnson

ianj@ccs.neu.edu

Northeastern University
Boston, MA, USA

David Van Horn
dvanhorn@cs.umd.edu

University of Maryland
College Park, MD, USA

“Sounds abstract”

“Sounds abstract”

“Sounds abstract”

Abstracting Abstract Machines

Interpreter

Abstract interpreter

Abstracting Abstract Machines

Interpreter

Abstract interpreter

Everything is an abstract interpretation!

Abstracting Abstract Machines

Interpreter

Abstract interpreter

Everything is an abstract interpretation!
Flow analysis
Symbolic evaluator
Termination/productivity analysis
White-box fuzzer

Abstracting Abstract Machines

Interpreter

Abstract interpreter

Allocator

Abstracting Abstract Machines

Interpreter

Abstract interpreter

Allocator

Abstracting Abstract Machines

Interpreter

Abstract interpreter

Allocator

Con: loses important control structure

Who cares about continuations?

Who cares about continuations?

Who cares about continuations?

RESTful web applications
Event-driven programming
Cloud computing
Actors
Operating systems
(Game engines?)

Who cares about continuations?

RESTful web applications
Event-driven programming
Cloud computing
Actors
Operating systems
(Game engines?)

Who cares about continuations?

RESTful web applications
Event-driven programming
Cloud computing
Actors
Operating systems
(Game engines?)

I don't understand!

</motivation>

s ↦ s'

s ↦ s' ŝ ↦̂ ŝ '

Heap-allocate recursion

s ↦ s' ŝ ↦̂ ŝ '
〈code, heap, cont〉

Heap-allocate recursion

s ↦ s' ŝ ↦̂ ŝ '
〈code, heap, cont〉

Heap-allocate recursion

s ↦ s' ŝ ↦̂ ŝ '
〈code, heap, cont〉

Addr

heap[Addr ↦ { }]

Heap-allocate recursion

s ↦ s' ŝ ↦̂ ŝ '
〈code, heap, cont〉

cont : List[Activation-Frame]

Heap-allocate recursion

s ↦ s' ŝ ↦̂ ŝ '
〈code, heap, cont〉

cont : List[Activation-Frame]

cons :X -> List[X] -> List[X]

Heap-allocate recursion

s ↦ s' ŝ ↦̂ ŝ '
〈code, heap, cont〉

cont : List[Activation-Frame]

cons :X -> Addr -> List[X]

Heap-allocate recursion

s ↦ s' ŝ ↦̂ ŝ '
〈code, heap, cont〉

cont : List[Activation-Frame]

cons :X -> Addr -> List[X]

heap : Map[Addr, Value]

Heap-allocate recursion

s ↦ s' ŝ ↦̂ ŝ '
〈code, heap, cont〉

cont : List[Activation-Frame]

cons :X -> Addr -> List[X]

heap : Map[Addr, Set[Value]]

h[a ↦ v] h[a ↦ h(a) ∪ {v}]

Say we have some function f : json -> html

Say we have some function f : json -> html

We wrap it to validate its input and output

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

Say we have some function f : json -> html

We wrap it to validate its input and output

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

read-request blocks until json is read, then calls f

Say we have some function f : json -> html

We wrap it to validate its input and output

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

read-request blocks until json is read, then calls f

Say we have some function f : json -> html

We wrap it to validate its input and output

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

read-request blocks until json is read, then calls f

Say we have some function f : json -> html

We wrap it to validate its input and output

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

read-request blocks until json is read, then calls f

Say we have some function f : json -> html

We wrap it to validate its input and output

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

read-request blocks until json is read, then calls f

Say we have some function f : json -> html

We wrap it to validate its input and output

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

read-request blocks until json is read, then calls f

Say we have some function f : json -> html

We wrap it to validate its input and output

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

read-request blocks until json is read, then calls f

Say we have some function f : json -> html

We wrap it to validate its input and output

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

read-request blocks until json is read, then calls f

Insight:
delimit computations &
catalog contexts by revelant state

The stack doesn't matter*

*yet

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

Contexts = [↦ {cont}]

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

Contexts = [↦ {cont}, ↦ {cont}]

What's really going on here?

AAM told us cons : X -> Addr -> List[X]

What's really going on here?

AAM told us cons : X -> Addr -> List[X]

Are just fancy addresses?

What's really going on here?

AAM told us cons : X -> Addr -> List[X]

Are just fancy addresses?

States are 〈code heap stack〉 and the stack is irrelevant

 is 〈code heap〉

What's really going on here?

AAM told us cons : X -> Addr -> List[X]

Are just fancy addresses?

States are 〈code heap stack〉 and the stack is irrelevant

 is 〈code heap〉

h[〈c,h'〉 ↦ {cont}]

What's really going on here?

AAM told us cons : X -> Addr -> List[X]

Are just fancy addresses?

States are 〈code heap stack〉 and the stack is irrelevant

 is 〈code heap〉

h[〈c,h'〉 ↦ {cont}]

What's really going on here?

AAM told us cons : X -> Addr -> List[X]

Are just fancy addresses?

States are 〈code heap stack〉 and the stack is irrelevant

 is 〈code heap〉

h[〈c,h'〉 ↦ {cont}]

 are stored in a stratified heap: Contexts

What if “the stack” isn't a stack ?

What if “the stack” isn't a stack ?
E[F[(shift k e)]] ↦ E[e{k := (λ (x) F[x])}]

E[F[(shift k e)]] ↦ E[e{k := (λ (x) F[x])}]

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))

E[F[(shift k e)]] ↦ E[e{k := (λ (x) F[x])}]

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))

#

E[F[(shift k e)]] ↦ E[e{k := (λ (x) F[x])}]

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))

#

now a function

E[F[(shift k e)]] ↦ E[e{k := (λ (x) F[x])}]

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))

#

now a function

run from here

E[F[(shift k e)]] ↦ E[e{k := (λ (x) F[x])}]

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))

 (+ 2 [])

#

now a function

run from here

E[F[(shift k e)]] ↦ E[e{k := (λ (x) F[x])}]

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))

 (+ 2 [])

(+ 10 (+ 40 (k (k 3))))

#

now a function

run from here

E[F[(shift k e)]] ↦ E[e{k := (λ (x) F[x])}]

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))

 k = (λ (x) (+ 2 x))

(+ 10 (+ 40 (k (k 3))))

#

now a function

run from here

E[F[(shift k e)]] ↦ E[e{k := (λ (x) F[x])}]

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))

 k = (λ (x) (+ 2 x))

(+ 10 (+ 40 ((λ (x) (+ 2 x)) ((λ (x) (+ 2 x)) 3)

#

now a function

run from here

E[F[(shift k e)]] ↦ E[e{k := (λ (x) F[x])}]

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))

 k = (λ (x) (+ 2 x))

(+ 10 (+ 40 (+ 2 (+ 2 3))))

#

now a function

run from here

E[F[(shift k e)]] ↦ E[e{k := (λ (x) F[x])}]

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))

 k = (λ (x) (+ 2 x))

(+ 10 (+ 40 (+ 2 (+ 2 3))))

57

#

now a function

run from here

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

read-request uses non-blocking I/O

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

read-request uses non-blocking I/O

(define (read-request f)
 (shift k (evloop-until-evt

(read-request-evt f)
k)))

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

read-request uses non-blocking I/O

(define (read-request f)
 (shift k (evloop-until-evt

(read-request-evt f)
k)))

h[ka ↦ {(comp)}]

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

read-request uses non-blocking I/O

(define (read-request f)
 (shift k (evloop-until-evt

(read-request-evt f)
k)))

h[ka ↦ {(comp 〈c,h'〉)}]

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

read-request uses non-blocking I/O

(define (read-request f)
 (shift k (evloop-until-evt

(read-request-evt f)
k)))

h[ka ↦ {(comp 〈c,h'〉)}]

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

read-request uses non-blocking I/O

(define (read-request f)
 (shift k (evloop-until-evt

(read-request-evt f)
k)))

h[ka ↦ {(comp 〈c,h'〉)}]

Can we stratify like with Contexts?

Of course not!

〈(shift k e), heap, 〉 produces heap(ka) ∋ (comp 〈c,a〉)

Of course not!

〈(shift k e), heap, 〉 produces heap(ka) ∋ (comp 〈c,a〉)

χ(a) ∋ h'

Of course not!

〈(shift k e), heap, 〉 produces heap(ka) ∋ (comp 〈c,a〉)

χ(a) ∋ h'

Well, now χ is relevant!

Of course not!

〈(shift k e), heap, 〉 produces heap(ka) ∋ (comp 〈c,a〉)

χ(a) ∋ h'

Well, now χ is relevant! Since χ closes the heap

Of course not!

〈(shift k e), heap, 〉 produces heap(ka) ∋ (comp 〈c,a〉)

χ(a) ∋ h'

Well, now χ is relevant! Since χ closes the heap

 ≡ 〈c', h', χ'〉

Of course not!

〈(shift k e), heap, 〉 produces heap(ka) ∋ (comp 〈c,a〉)

χ(a) ∋ h'

Well, now χ is relevant! Since χ closes the heap

 ≡ 〈c', h', χ'〉

χ(a) ∋ 〈h',χ'〉

Of course not!

〈(shift k e), heap, 〉 produces heap(ka) ∋ (comp 〈c,a〉)

χ(a) ∋ h'

Well, now χ is relevant! Since χ closes the heap

 ≡ 〈c', h', χ'〉

χ(a) ∋ 〈h',χ'〉

Of course not!

〈(shift k e), heap, 〉 produces heap(ka) ∋ (comp 〈c,a〉)

χ(a) ∋ h'

Well, now χ is relevant! Since χ closes the heap

 ≡ 〈c', h', χ'〉

χ(a) ∋ 〈h',χ'〉

χ and heap are mutually recursive! Can't stratify!

Squash it
Instead of χ ⊔ [a ↦ 〈h',χ'〉]

we do χ ⊔ χ' ⊔ [a ↦ {h'}]

⟦〈c',a〉⟧ = {cont ∈ Contexts(〈c',h',χ'〉) : h' ∈ χ(a), χ' ⊑ χ}

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

(define (read-request f)
 (shift k (evloop-until-evt

(read-request-evt f)
k)))

h = []

χ = []

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

(define (read-request f)
 (shift k (evloop-until-evt

(read-request-evt f)
k)))

h = [ka ↦ {(comp 〈 ,a〉)}]

χ = ⊔ [a ↦ { }]

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

(define (read-request f)
 (shift k (evloop-until-evt

(read-request-evt f)
k)))

h = [ka ↦ {(comp 〈 ,a〉), (comp 〈 ,a〉)}]

χ = ⊔ ⊔ [a ↦ { , }]

(λ (j)
(if (good-json? j)

(let ([r (f j)])
 (if (good-html? r)

r
(blame 'f)))

(blame 'user)))

(document.write `(p ,(read-request f)
,(read-request f)))

(define (read-request f)
 (shift k (evloop-until-evt

(read-request-evt f)
k)))

h = [ka ↦ {(comp 〈 ,a〉)},
ka ↦ {(comp 〈 ,a〉)}]

χ = ⊔ ⊔ [a ↦ { }] ⊔ [a ↦ { }]

Where do we stand?

 abstract languages and respect control

Where do we stand?

 abstract languages and respect control

Want shift/reset in modular semantics

Where do we stand?

 abstract languages and respect control

Want shift/reset in modular semantics

(what if (comp) is)

Where do we stand?

 abstract languages and respect control

Want shift/reset in modular semantics

(what if (comp) is)

Not all the heap is relevant

Where do we stand?

 abstract languages and respect control

Want shift/reset in modular semantics

(what if (comp) is)

Not all the heap is relevant [Stefan Staiger-Stӧhr diss]

Takeaway

Delimit computations by relevant state

Takeaway

Delimit computations by relevant state

Squash abstracted relevance objects

Takeaway

Delimit computations by relevant state

Squash abstracted relevance objects

Break cycles in state space with addresses

Takeaway

Delimit computations by relevant state

Squash abstracted relevance objects

Break cycles in state space with addresses

Thank you

