Abstracting Abstract Control

[

J. lan Johnson David Van Horn

ianj@ccs.neu.edu dvanhorn@cs.umd. edu

ortheastern University University of Maryland
Boston, MA, USA College Park, MD, USA

“hum

“Seands abstract”

“Sournds abstract

Abstracting Abstract Machines

David Van Horn *
Northeastern University
dvanhorn@ccs.neu.edu

Abstract

‘We describe a derivational approach to abstract interpretation that
yields novel and transparently sound static analyses when applied
to well abstract machines. To the tech-
nique and support our claim, we transform the CEK machine
of Felleisen and Friedman, a lazy variant of Krivine’s machine,
and the stack-inspecting CM machine of Clements and Felleisen
into abstract interpretations of themselves. The resulting analyses
bound temporal ordering of program events; predict return-flow
and stack behavior; and a ate the flow and eval-
uation of by-need parameters. For all of these machines, we find
that a series of well-known concrete machine refactorings, plus a
technique we call store-allocated continuations, leads to machines
that abstract into static analyses simply by bounding their stores.
We demonstrate that the technique scales up uniformly to allow
static analysis of realistic language features, including tail calls,
side effects, first-class and
even garbage collection.

Categories and Subject Descriptors F32 [Logm and Meanings

of Programs): of F —Program
analysis, Oj ics; F4.1 [Math I Logic and
Formal Languages|: Mathematical Logic—Lambda calculus and
related systems

General Terms Languages, Theory

Keywords abstract machines, abstra

tinterpretation

1. Introduction

Abstract machines such as the CEK machine and Krivine’s ma-
chine are first-order state transition systems that represent the core
of a real language implementation. Semantics-based program anal-
ysis, on the other hand, is concerned with safely approximating
intensional properties of such a machine as it runs a program. It
seems natural then to want to systematically derive analyses from
machines to approximate the core of realistic run-time systems.

Our goal is to develop a technique that enables direct abstract
interpretations of abstract machines by methods for transforming
a given machine description into another that computes its finite
approximation.

* Supported by the National Science Foundation under grant 0937060 to the
Computing Research Association for the CIFellow Project

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute:
to lists, requires prior specific permission and/or a fee.

P10, September 27-29, 2010, Baltimore, Maryland, USA.
Cupyrwhl ®© 2010 ACM 978-1-60558-794-3/10/09....$10.00

Matthew Might

University of Utah
might@cs.utah.edu

‘We demonstrate that the technique of refactoring a machine
with store-allocated continuations allows a direct structural ab-
straction' by bounding the machine’s store. Thus, we are able to
convert semantic techniques used to model language features into
static analysis techniques for reasoning about the behavior of those
very same features. By abstracting well-known machines, our tech-
nique delivers static analyzers that can reason about by-need evalu-
ation, higher-order functions, tail calls, side effects, stack structure,

and first-class

The basic idea behind store-allocated continuations is not new.
SML/NJ has allocated continuations in the heap for well over a
decade [28]. At first glance, modeling the program stack in an ab-
stract machine with store-allocated continuations would not seem
to provide any real benefit. Indeed, for the purpose of defining the
meaning of a program, there is no benefit, because the meaning
of the program does not depend on the stack-implementation strat-
egy. Yet, a closer inspection finds that
tions eliminate recursion from the defi 2 2
the machine. With no recursive structure in the state-space, an ah-
stract machine becomes eligible for conversion into an abs
terpreter through a simple structural abstraction.

To demonstrate the applicability of the approach, we derive
abstract interpreters of:

® a call-by-value A-calculus with state and control based on the
CESK machine of Felleisen and Friedman [13],
o a call-b 4

s based on a tail-recursive, lazy vari-
ant of Krivinc's umhme derived by Ager, Danvy and Midt-
gaard [1], and

® a call-b I Iculus with stack inspection based on the
CM machine of Clements and Felleisen [3];

and use abstract garbage collection to improve precision [25].

Overview

In Section 2, we begin with the CEK machine and attempt a struc-
tural abstract interpretation, but find ourselves blocked by two re-
cursive structures in the machine: environments and continuations.
‘We make three refactorings to:

1. store-allocate bindings,
2. store-allocate continuations, and
3. time-stamp machine stat

resulting in the CESK, CESK*, and time-stamped CESK* ma-
chines, respectively. The time-stamps encode the history (context)
of the machine’s execution and facilitate context-sensitive abstrac-
tions. We then demonstrate that the time-stamped machine ab-
stracts directly into a parameterized, sound and computable static
analysis.

! Astructural abstra -omponent-, point-, and member-wise.

ore-allocating continua-

Abstracting Control *

Olivier Danvy T

Abstract

The last few years have seen a renewed interest in continua-
tions for expressing advanced control structures in program-
ming languages, and new models such as Abstract Continua
tions have been proposed to capture these dimensions. This
article investigates an alternative formulation, exploiting the
latent expressive power of the standard continuation-passing
style (CPS) instead of introducing yet other new concepts.
We build on a single foundation: abstracting control as a
hierarchy of continuations, each one modeling a specific lan-
guage feature as acting on nested evaluation contents.

We show how iterating the continuation-passing conver-
sion allows us to specify a wide range of control behavior.
For example, two conversions yield an abstraction of Prolog-
style backtracking. A number of other constructs can like-
wise be expressed in this framework; each is defined inde-
pendently of the others, but all are arranged in a hierarchy
making any interactions between them explicit.

This approach preserves all the traditional results about
CPS, e.g., its evaluation order independence. Accordingly,
our semantics is directly implementable in a call-by-value
language such as Scheme or ML. Furthermore, because the
control operators denote simple, typable lambda-terms in
CPS, they themselves can be statically typed. Contrary to
intuition, the iterated CPS transformation does not yield
huge results: except where explicitly needed, all continna-
tions beyond the first one disappear due to the extensional-
ity principle (y-reduction).

esides presenting a new motivation for control opera-
tors, this paper also describes an improved conversion into
applicative-order CPS. The conversion operates in one pass
by performing all administrative reductions at translation
time; interestingly, it can be expressed very concisely using
the new control operators. The paper also presents some
examples of nondeterministic programming in direct style.

“The core of this werk was developed at DIKU, the Compurer
Science department ac the Universty of Copenhingen, Denmack
(danv u dk, andrzci@diku dk)

TThis work has hencfited from visis co the Computcr Scicnce do
partments of Sranford U ty {thanks ro Carolyn L Talcotr), In-
diana University ufmnl&s to Danicl P Iricdman], and Kansas Statc
University (thanks to David A Schmidr) during the academic year
1080-1690

Andrzej Filinski

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

andrzej+Qcs.cmu.edu

Introduction

Strachey and Wadsworth’s continuations were a break-
through in nnderstanding imperative constructs of program-
ming languages. They gave a clear and unam biguous seman
tics to a wide class of control operations such as escapes and
coroutines. In recent years, however, there has been a grow-
ing interest in a class of control operators [Felleisen et al. 87)
[Felleisen 88] which do not seem to fit into this framework.
The point of these new operators is to abstract control with
regular procedures that do not escape when they are applied

This approach encourages seeing not only procedures as
the computational counterpart of functions but extending
this view to continuations as well. Llowever, the published
semantic descriptions, [Felleisen et al. 8] do not actually
represent continuations as functions but as concatenable se-
quences of activation frames, losing the inherent simplicity
of the original functional formalism. Does this mean that
control operators substantially more powerful than jumps
are indeed beyond the limit of a traditional continuation
semantics?

In the following, we present a denotational “standard
semantics” [Milne & Strachey 76], where continuations are
represented with functions and control is abstracted with
procedures, and where programs have natural, purely func-
tional counterparts. In doing so, we replace the fundamen-
tally dynamic control scoping specified by prior definitions of
composable continuations with a properly static approach,
akin to the difference between Lisp and Scheme.

The new idea is that a term is evaluated in a collec-
tion of embedded contexts, each represented by a continu-
ation. The denotation of a term is expressed in ertended
continuation-pssing style (ECPS). Lssentially, this gener-
alizes ordinary continuation-passing style to a hierarchy of
continuations, one for each context. Very importantly, how-
ever, it inherits the characteristic, syntactically restricted
form of a A-calculus without nested function applications.
As such, it still yields semantic specifications where the eval-
uation order of the defined language is independent of the
evaluation order of the defining one [Reynolds

Of course, extended continuation-passing style is in gen-
eral more verbose than plain continuation-passing style.
This suggests introducing new control operators to retain
the ability of expressing programs in direct style, mirroring
the rationale for including call-with-current-continuation
in Scheme [Rees & Clinger 86] [Miller 87, appendix A]. We
will show how such control operators can in fact be system-
atically added to an applicative order A-calculus.

“Sournds abstract

Abstracting Abstract Machines

David Van Horn *
Northeastern University
dvanhorn@ccs.neu.edu

Abstract

‘We describe a derivational approach to abstract interpretation that
yields novel and transparently sound static analyses when applied
to well abstract machines. To the tech-
nique and support our claim, we transform the CEK machine
of Felleisen and Friedman, a lazy variant of Krivine’s machine,
and the stack-inspecting CM machine of Clements and Felleisen
into abstract interpretations of themselves. The resulting analyses
bound temporal ordering of program events; predict return-low
and s behavior; and a ate the flow and eval-
uation of by-need parameters. For all of these machines, we find
that a series of well-known concrete machine refactorings, plus a
technique we call store-allocated continuations, leads to machines
that abstract into static analyses simply by bounding their stores.
We demonstrate that the technique scales up uniformly to allow
static dnaly s of realistic lanwage feature: m(,ludmg tail calls,
side effects, first-class and
even garbage collection.

Categories and Subject Descriptors 3.2 [Logics and Meanings
of Programs): of F Lang —Program
analysis, Oj ics; F4.1 [Math I Logic and
Formal Languages|: Mathematical Logic—Lambda calculus and
related systems

General Terms Languages, Theory

Keywords abstract machines, abstra

tinterpretation

1. Introduction

Abstract machines such as the CEK machine and Krivine’s ma-
chine are first-order state transition systems that represent the core
of a real language implementation. Semantics-based program anal-
ysis, on the other hand, is concerned with safely approximating
intensional properties of such a machine as it runs a program. It
seems natural then to want to systematically derive analyses from
machines to approximate the core of realistic run-time systems.

Our goal is to develop a technique that enables direct abstract
interpretations of abstract machines by methods for transforming
a given machine description into another that computes its finite
approximation.

* Supported by the National Science Foundation under grant 0937060 to the
Computing Research Association for the CIFellow Project

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute:
to lists, requires prior specific permission and/or a fee.

ICFP'10, - September 27-29, 2010, Baltimore, Maryland, USA.

Copyright © 2010 ACM 978-1-60558-794-3/10/09....$10.00

Matthew Might

University of Utah
might@cs.utah.edu

‘We demonstrate that the technique of refactoring a machine
with store-allocated continuations allows a direct structural ab-
straction' by bounding the machine’s store. Thus, we are able to
convert semantic techniques used to model language features into
static analysis techniques for reasoning about the behavior of those
very same features. By abstracting well-known machines, our tech-
nique delivers static analyzers that can reason about by-need evalu-
ation, higher-order functions, tail calls, side effects, stack structure,

and first-class

The basic idea behind store-allocated continuations is not new.
SML/NJ has allocated continuations in the heap for well over a
decade [28]. At first glance, modeling the program stack in an ab-
stract machine with store-allocated continuations would not seem
to provide any real benefit. Indeed, for the purpose of defining the
meaning of a program, there is no benefit, because the meaning
of the program does not depend on the stack-implementation strat-
egy. Yet, a closer inspection finds that store-allocating continua-
tions eliminate recursion from the defi f t f
the machine. With no recursive structure in the \lnle -space, an ah-
stract machine becomes eligible for conversion into an abs
terpreter through a simple structural abstraction.

To demonstrate the applicability of the approach, we derive
abstract interpreters of:

® a call-by-value A-calculus with state and control based on the
CESK machine of Felleisen and Friedman [13],
o a call-b 4

s based on a tail-recursive, lazy vari-
ant of Krivinc's umhme derived by Ager, Danvy and Midt-
gaard [1], and

o a call-by-val leulus with stack inspection based on the
CM machine of Clements and Felleisen [3];

and use abstract garbage collection to improve precision [25].

Overview

In Section 2, we begin with the CEK machine and attempt a struc-
tural abstract interpretation, but find ourselves blocked by two re-
cursive structures in the machine: environments and continuations.
‘We make three refactorings to:

1. store-allocate bindings,
2. store-allocate continuations, and
3. time-stamp machine stat

resulting in the CESK, CESK*, and time-stamped CESK* ma-
chines, respectively. The time-stamps encode the history (context)
of the machine’s execution and facilitate context-sensitive abstrac-
tions. We then demonstrate that the time-stamped machine ab-
stracts directly into a parameterized, sound and computable static
analysis.

! A structural abstraction distribut

omponent-, point-, and member-wise.

Abstracting Control *

Olivier Danvy T

Andrzej Filinski

Abstract Models of Memory Management*

Greg Morrisett, Matthias Felleisen Robert Harper

A Tail-Recursive Machine with

Stack Inspection

JOHN CLEMENTS and MATTHIAS FELLEISEN

Pushdown Flow Analysis of First-Class Control

Dimitrios Vardoulakis Olin Shivers

Northeastern University

dimvar@ccs.neu.edu

Abstract

Pushdown models are better than control-flow graphs for higher-
order flow analysis. They faithfully model the call/return structure
of a program, which results in fewer spurious flows and increased
precision. However, pushdown models require that calls and returns
in the analyzed program nest properly. As a result, they cannot be
used to analyze language constructs that break call/return nesting
such as generators, coroutines, call/cc, efc.

In this paper, we extend the CFA2 flow analysis to create the
first pushdown flow analysis for languages with first-class control.

shivers@ccs.neu.edu

allow complex control flow, such as jumping back to functions that
have already returned. Continuations come in two flavors. Unde-
limited continuations (call/cc in Scheme [19] and SML/NJ [5])
capture the entire stack. Delimited continuations [7, 9] [15, Scala
2.8] capture part of the stack. Continuations can express generators
and coroutines, and also multi-threading [17, 24] and Prolog-style
backtracking. All these operators provide a rich variety of control
behaviors. Unfortunately, we cannot currently use pushdown mod-
els to analyze programs that use them.

We rectify this situation by extending the CFA2 flow analy-
sis [21] to with first-class control. We make the following

We modify the abstract semantics of CFA2 to allow
1o escape to, and be restored from, the heap. We then present a
summarization algorithm that handles escaping continuations via a
new kind of summary edges. We prove that the algorithm is sound
with respect to the abstract semantics.

Categories and Subject Descriptors F3.2 [Semantics of Pro-
gramming Languages): Program Analysis

General Terms Languages

Keywords pushdown flow analysis, first-class continuations, re-

contributions.

* CFA2 is based on abstract interpretation of programs in contin-
uation-passing style (abbrev. CPS). We present a CFA2-style
abstract semantics for Restricted CPS, a variant of CPS that
allows continuations to escape but also permits effective rea-
soning about the stack [23]. When we detect a continuation that
‘may escape, we copy the stack into the heap (sec. 4.3). We prove
that the abstract semantics is a safe approximation of the actual
runtime behavior of the program (sec. 4.4).

Abstracting Abstract Machines

Interpreter

| —> Abstract interpreter

Abstracting Abstract Machines

Interpreter

1

—> Abstract interpreter

Everything is an abstract interpretation!)

Abstracting Abstract Machines

Interpreter

o

—> Abstract interpreter

M\\

Everything is an abstract interpretation!)

Flow analysis

Symbolic evaluator
Termination/productivity analysis
White-box fuzzer

Abstracting Abstract Machines

Interpreter

l

Allocator

l

Abstract interpreter

Abstracting Abstract Machines

Interpreter<

Allocator

l

Abstract interpreter |

Abstracting Abstract Machines

Interpreter<-

.

Allocator

(r

ater

Who cares about continaations?

Who cares about continaations?

Who cares about continuations?

RESTful web applications
Event-driven programming
Cloud computing

Actors

Operating systems

(Game engines?)

ho cares about 00W7

RES
Event
Clou

Actors
Oneratina systems

ines?)
' o= Typesafe

Hekate — a highly-concurrent BitTorrent seeder.

The

ho cares about com‘W7

A
akka

| don't understand!

P

utatiogin*the cloud”

The

=ypesafe

Hekate — a highly-concurrent BitTorrent seeder.

</motivation>

Sk S

S s'FESM S

Heap-allocate recursion

(code, heap, cont)
|

SH sSSP S

Heap-allocate recursion

(code, heap, cont)
C e !

Heap-allocate recursion

(code, heap, cont)
C e !

Heap-allocate recursion

(code, heap, cont)
|

SH sSSP S

cont : List[Activation-Frame]

Heap-allocate recursion

(code, heap, cont)

Sk s'Hs P g
cont : List[Activation-Frame]
cons :X —> List[X] —> List[X]

Heap-allocate recursion

(code, heap, cont)

Sk s'Hs P g
cont : List[Activation-Frame]
cons :X => Addr -> List[X]

Heap-allocate recursion

(code, heap, cont)

sk sSSP
cont : List[Activation-Frame]
cons :X => Addr -> List[X]
heap : Map[Addr, Value]

Heap-allocate recursion

(code, heap, cont)

sk sSSP
cont : List[Activation-Frame]
cons :X => Addr -> List[X]
heap : Map[Addr, Set[Value]]
h[a P v]#h[a h(a) U {v}]

Say we have some function f : json -> html

Say we have some function f : json -> html

We wrap it to validate its input and output

(A (3)
(1f (good-json? j)
(let ([r (f 3)1)
(1f (good-html? r)
r
(blame 'f)))
(blame ‘'user)))

Say we have some function f : json -> html

We wrap it to validate its input and output

(N (3)
(1f (good-json? j)
(Let ([r (f 3)1)
(1f (good-html? r)
r
(blame 'fT)))
(blame ‘'user)))

(document.write " (p , (read-request f)
, (read-request f)))

read-request blocks until json is read, then calls f

Say we have some function f : json -> html

We wrap it to validate |

(N (3)
(1f (good-json:
(Let ([r (f 3)1)
(1f (good-html? r)
r
(blame 'fT)))
(blame ‘'user)))

input and output

(document.write " (p , (read-request f)
, (read-request f)))

read-request blocks until json is read, then calls f

Say we have some function f : json -> html

We wrap it to validate |

(N (3)
(1f (good-json:
(Let ([r (f 3)1)
(1f od-html? r)
f tgood:
(blame 'fT)))
(blame ‘'user)))

input and output

(document.write " (p , (read-request f)
, (read-request f)))

read-request blocks until json is read, then calls f

Say we have some function f : json -> html

We wrap it to validate |

(N (3)
(1f (good-json:
(Let ([r (f 3)1)
(1f od-html? r)

f tgood:
(blame 'fT)
(blame ‘'user)))

input and output

(document.write " (p , (read-request f)
, (read-request f)))

read-request blocks until json is read, then calls f

Say we have some function f : json -> html

We wrap it to validate |

(N (3)
(1f (good-json:
(let ([r (f j)1)
(1f od-html? r)

f tgood:
(blame 'fT)
(blame ‘'user)))

input and output

(document.write " (p , (read-request f)
, (read-request f)7)

read-request blocks until json is read, then calls f

Say we have some function f : json -> html

We wrap it to validate |

(N (3)
(1f (good-json:
(let ([r (f j)1)
(1f od-html? r)

f tgood-
(blame
(blame ‘'user)))

input and output

(document.write " (p , (read-rgquest f)
, (read-request f)7)

read-request blocks until json is read, then calls f

Say we have some function f : json -> html

We wrap it to validate

(A (3)
(1f (good-json:
(let ([r (f 3)1)
(1f od-html? r)

f taood-
(blame
(blame ‘'user)))

input and output

(document.write " (p , (read-rgquest f)
, (read-request f)9)

read-request blocks until json is read, then calls f

Say we have some function f : json -> html

We wrap it to validate |

(A (3)

(1f (good-json:
(1et<;£;6£f,j)])

(1Lf od-html? r)

input and output

(blame
(blame 'user)))

(document.write " (p , (read-request f)
, (read-request f)9)

read-request blocks until json is read, then calls f

(nsight:
delimit computations &
catalog contexts by revelant state

The ovtacé doesn 't matter

(A (7)
(1f (good-json? j)
(Let ([r (f 3)1)
(1f (good-html? r)
r
(blame 'f)))
(blame 'user)))

(document.write " (p , (read-request f)
, (read-request f)))

(A ()@
(1f (good-json:

(let ([r (f j)1)
(1f od-html? r)

r
(blame 'f))
(blame 'user)))

(document.write " (p , (read-request f)
, (read-request f)))

Contexts = [@ » {cont}]

(A (j)oe®
(1f (good-json-
(let ([r (f 3)1)
(iZ;Lgcﬁa:html? r)

r
(blame
(blame ‘'user)))

(document.write " (p , (read-request f)
, (read-request f)

Contexts = [@® » {cont}, ® » {cont}]

What s really going on here?

AAM told us cons : X -> Addr -> List[X]

What s really going on here?

AAM told us cons : X -> Addr -> List[X]

Are @ just fancy addresses?

What s really going on here?

AAM told us cons : X -> Addr -> List[X]
Are @ just fancy addresses?

States are (code heap stack) and the stack is irrelevant

® is (code heap)

What s really going on here?

AAM told us cons : X -> Addr -> List[X]
Are @ just fancy addresses?

States are (code heap stack) and the stack is irrelevant

® is (code heap)

h[{(c,h') » {cont}]

What s really going on here?

AAM told us cons : X -> Addr -> List[X]
Are @ just fancy addresses?

States are (code heap stack) and the stack is irrelevant

® is (code heap)

£

h[{(c,h') » {cont}]

_J

What s really going on here?

AAM told us cons : X -> Addr -> List[X]
Are @ just fancy addresses?
States are (code heap stack) and the stack is irrelevant

® is (code heap)

£

h[{(c,h') » {cont}]

_J

® are stored in a stratified heap: Contexts

What if “the stack” isnt a stack ?

What if “the stack” isnt a stack ?

E[F[(shift k e)]] » E[e{k := (A (X) F[x])}]

E[F[(shift kK e)]] » E[e{k := (A (X) F[x])}]

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))

E[F[(shift kK e)]] » E[e{k := (A (X) F[x])}]

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))

E[F[(shift kK e)]] » E[e{k := (A (X) F[x])}]

now a function

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))

E[F[(shift kK e)]] » E[e{k := (A (X) F[x])}]

now a function

<run from here

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))

E[F[(shift kK e)]] » E[e{k := (A (X) F[x])}]

now a function

<run from here

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))
(+ 2 [D

E[F[(shift kK e)]] » E[e{k := (A (X) F[x])}]

now a function

<run from here

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3))))))
(+ 2D
(+ 10 (+ 40 (k (k 3))))

E[F[(shift kK e)]] » E[e{k := (A (X) F[x])}]

now a function

<run from here

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3))))))
k= (A () (+2 x))
(+ 10 (+ 40 (k (k 3))))

E[F[(shift kK e)]] » E[e{k := (A (X) F[x])}]

now a function

<run from here

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3))))))
k= (A () (+2 x))
(+ 10 (+ 40 ((A () (+2x)) (A () (+2x)) 3)

E[F[(shift kK e)]] » E[e{k := (A (X) F[x])}]

now a function

<run from here

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3))))))
k= (A () (+2 x))
(+10 (+ 40 (+ 2 (+ 2 3))))

E[F[(shift kK e)]] » E[e{k := (A (X) F[x])}]

now a function

<run from here

(+ 10 (reset (+ 2 (shift k (+ 40 (k (k 3)))))))
k= (A (xX) (+2 x))

(+ 10 (+ 40 (+ 2 (+ 2 3))))

57

(A (7)
(1f (good-json? j)
(Let ([r (f 3)1)
(1f (good-html? r)
r
(blame 'f)))
(blame 'user)))

(document.write " (p , (read-request f)
, (read-request f)))

read-request uses non-blocking 1/0

(A [=)\
(define (read-request f)
(shift k (evlioop-until-evt
(read-request-evt f)

k)))

T T ATITE T ™ —
(blame 'user)))

(document.write " (p , (read-request f)
, (read-request f)))

read-request uses non-blocking 1/0

(A [=)\
(define (read-request f)
(shift k (evlioop-until-evt
(read-request-evt f)

k)))

T T ANTE] —
(blame 'user)))

(document.w h[ka - {(comp ®))] ::g:::: R))

DS—
read-request uses non-blocking I/0

(A [=)\
(define (read-request f)
(shift k (evlioop-until-evt
(read-request-evt f)

k)))

T T ANTE] —
(blame 'user)))

(document. h[ka = {(comp {c,h"))}] g:::: R))

T ——
read-request uses non-blocking I/O

(A [=)\
(define (read-request f)
(shift k (evlioop-until-evt
(read-request-evt f)

k)))

(document. quest fT)

h[ka > {(comp (.M} giest f)))

read- requestng 1/0

(A [=)\
(define (read-request f)
(shift k (evlioop-until-evt
(read rens- 5 F)

(document. quest fT)

h[ka > {(comp (.M} giest f)))

read- requestng /0

Of course not!

((shift k e), heap, ®) produces heap(ka) 2 (comp (c,a))

Of course not!

((shift k e), heap, ®) produces heap(ka) 2 (comp (c,a))
X(a) 2 h’

Of course not!

((shift k e), heap, ®) produces heap(ka) 2 (comp (c,a))
X(a) 2 h’

Well, now Y is relevant!

Of course not!

((shift k e), heap, ®) produces heap(ka) 2 (comp (c,a))
X(a) 2 h’

Well, now Y is relevant! Since ¥ closes the heap

Of course not!

((shift k e), heap, ®) produces heap(ka) 2 (comp (c,a))
X(a) D h'
Well, now Y is relevant! Since ¥ closes the heap

.E <C', h', X1>

Of course not!

((shift k e), heap, ®) produces heap(ka) 2 (comp (c,a))
X(a) D h'
Well, now Y is relevant! Since ¥ closes the heap

.E <C', h', X1>

X(a) 2 <(h') X")

Of course not!

((shift k e), heap, ®) produces heap(ka) 2 (comp (c,a))
X(a) 2 h’

Well, now Y is relevant! Since ¥ closes the heap

-

x(@@ 2 (h',

.E <C', h', X1>

Of course not!

((shift k e), heap, ®) produces heap(ka) 2 (comp (c,a))
Xx(a) 2 h’

Well . : .
X and heap are mutually recursive! Can't stratify!

0 = (L, 1mmm—— T —

-

X@) 3 (h',X")

4

Sq&m&‘é 14
Instead of Y Ul[aw» (h',X')]
wedoy UY' Ular {h'}]

[{c',a)] = {cont € Contexts({c’,h’, X)) : h" € x(a), X' C x}

(define (read-request f)
(A (shift k (evloop-until-evt
(read-request-evt f)

k)))

CEERTTTTY VU T LT —
r

(h1ame '"'f)))
Eh=0

(document uest f)
¥ =[] uest f)))

T —.

(define (read-request f)e®
(A (shift k (evloop-until-evt
(read-request-evt f)

k)))

CERTTTUTY VU T LI O T —
r

(h1ame 'f)))
(b h=[kaw {(comp (€,a))}]
(document uest f)
Y=l [3 s () nest f)))
——

(define (read-request f)eoe®
(A (shift k (evloop-until-evt
(read-request-evt f)

k)))

CEEERTTTUY VU T LI U —
r

(h1ame 'f)))
h = [ka = {(comp (€,3a)), (comp (€ ,a))}]
(doc f)
y= vl sU[ae{* %] f)))
L

(define (read-request f)eoe®
(A (shift k (evloop-until-evt
(read-request-evt f)

k)))

CNERTTTUY UV T LI O
r

(hl1ame 'f)))
h = [ka = {(comp (¢,2))),
(docun ka b {(comp (€,2))}] o
X=rU-Ulr{Mulry D)
L

Where do we stand?

abstract languages and respect control

Where do we stand?

abstract languages and respect control

Want shift/reset in modular semantics

Where do we stano?

" abstract languages and respect control

Want shift/reset in modular semantics

(what if (comp @) is

Where do we stano?

" abstract languages and respect control

Want shift/reset in modular semantics

(what if (comp @) is

Not all the heap is relevant

Where do we stano?

' abstract languages and respect control

Want shift/reset in modular semantics

(what if (comp @) is

Not all the heap is relevant [Stefan Staiger-Stohr diss]

Takeaway

Delimit computations by relevant state

Takeaway

Delimit computations by relevant state

Squash abstracted relevance objects

Takeaway

Delimit computations by relevant state
Squash abstracted relevance objects

Break cycles in state space with addresses

Takeaway

Delimit computations by relevant state
Squash abstracted relevance objects

Break cycles in state space with addresses

Sk

