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Abstract

Abstracting abstract machines has been proposed as a lightweight
approach to designing sound and computable program analyses.
The approach derives abstract interpreters from existing machine
semantics and has been applied to a variety of languages with
features widely considered difficult to analyze. Although sound
analyzers are straightforward to build under this approach, they are
also prohibitively inefficient.

This article contributes a step-by-step process for going from
a naive analyzer derived under the abstracting abstract machine
approach to an efficient program analyzer. The end result of the
process is a two to three order-of-magnitude improvement over
the systematically derived analyzer, making it competitive with
hand-optimized implementations that compute fundamentally less
precise results.

1. Introduction

The abstracting abstract machines (AAM) approach [26, 28] to de-
riving program analyses provides a systematic way of transforming
a programming language semantics in the form of an abstract ma-
chine into a family of abstract interpreters. The approach parame-
terizes these families with policies for regulating analytic precision.
While flexible and robust, the AAM approach unfortunately yields
analyzers with poor performance relative to hand-optimized ana-
lyzers. Our work takes aim squarely at this “efficiency gap,” and
narrows it in an equally systematic way.

By taking a machine-oriented view of computation, AAM
makes it possible to design, verify, and implement program ana-
lyzers for realistic language features typically considered difficult
to model. The approach was originally applied to features such as
higher-order functions, stack inspection, exceptions, laziness, first-
class continuations, and garbage collection. It has since been used
to verify actor- [7] and thread-based [ 18] parallelism and behavioral
contracts [25]; it has been used to model Coq [21], Dalvik [20], Er-
lang [8], JavaScript [27], and Racket [25].

The primary strength of the approach is that abstract interpreters
can be easily derived through a small number of steps from exist-
ing machine models. Since the relationships between abstract ma-
chines and higher-level semantic models—such as definitional in-
terpreters [24], structured operational semantics [23], and reduction
semantics [11]—are well understood [5], it is possible to navigate
from these high-level semantic models to sound program analyz-
ers in a systematic way. Moreover, since these analyses so closely
resemble a language’s interpreter (a) implementing an analysis re-
quires little more than implementing an interpreter, (b) a single im-
plementation can serve as both an interpreter and analyzer, and (c)
verifying the correctness of the implementation is straightforward.

However, there is a considerable weakness with the approach:
an analyzer designed and implemented by following the AAM
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Figure 1. Factor improvements over the baseline analyzer for the
Vardoulakis and Shivers benchmark in terms of peak memory us-
age, the rate of state transitions, and total analysis time. (Bigger is
better.) Each point is marked with the section that introduces the
optimization.

recipe is prohibitively inefficient without both further approxima-
tion and further implementation effort.

In this article, we develop a systematic approach to deriving the
feasible implementation of an abstract-machine-based analyzer.

2. Ataglance

This paper is organized in two halfs: in the first, we start with a
quick review of the AAM approach to develop an analysis frame-
work and then apply our step-by-step optimization techniques in
the simplified setting of a core functional language. This allows us
to explicate the optimizations with a minimal amount of inessen-
tial technical overhead. In the second half, we scale this approach
up to an analyzer for a realistic untyped, higher-order imperative
language with a number of interesting features and then measure
improvements across a suite of benchmarks.

At each step during the initial presentation and development,
we evaluate the implementation on a benchmark from Vardoulakis
and Shivers [29] that tests distributivity of multiplication over ad-
dition on Church numerals. For the step-by-step development, this
benchmark is particularly informative:

1. it can be written in most modern programming languages,

2. it was designed to stress an analyzer’s ability to deal with
complicated environment and control structure arising from the
use of higher-order functions to encode arithmetic, and

3. it proves to be the least improved benchmark of the complete
suite considered in section 6, and thus it serves as a good sanity
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(a) Baseline

(b) Lazy (c) Compiled (& lazy)

Figure 2. Example state graphs for the program above. Part (a)
shows the result of the baseline analyzer. It has long “corridor”
transitions and “diamond” subgraphs that fan-out from nondeter-
minism and fan-in from joins. Part (b) shows the result of perform-
ing nondeterminism lazily and thus avoids many of the diamond
subgraphs. Part (c) shows the result of abstract compilation that re-
moves intepretive overhead in the form of intermediate states, thus
minimizing the corridor transitions. The end result is a more com-
pact abstraction of the program that can be generated faster.

check and lower-bound for each of the optimization techniques
considered.

We start, in section 3, by developing an abstract interpreter
according to the AAM approach. Without further abstraction, the
analysis is exponential due to per-state store variance and thus
cannot analyze the example in a reasonable amount of time. In
section 4, we perform a further abstraction by widening the store.
The resulting analyzer sacrifices precision for speed and is able to
analyze the example in about 1 minute. This step is described by
Van Horn and Might [28, §3.5-6] and is necessary to make even
small examples feasible. We therefore take the widened interpreter
as the baseline for our evaluation.

Section 5 gives a series of simple abstractions and implemen-
tation techniques that, in total, speed up the analysis by nearly a
factor of 500, dropping the analysis time to a fraction of a second.
Figure 1 shows the step-wise improvement of the analysis time for
this example.

The AAM approach, in essence, does the following: it takes
a machine-based view of computation and turns it into a finitary
approximation by bounding the size of the store. With a limited
address space, the store must map addresses to sets of values.
Store updates are interpreted as joins, and store dereferences are
interpreted by non-deterministic choice of an element from a set.
The result of analyzing a program is a finite directed graph where
nodes in the graph are (abstract) machine states and edges denote
machine transitions between states.

Expressions e = var(z)
| 1itf()
| 1lam’(z,e)
| app’(e,e)
| if'e,ee)
Variables x = x|y]|..
Literals Il = z|blo
Integers z = 0|1|-1]|
Booleans b = tt]|ff
Operations o = zero?|addl|subl]| ...

Figure 3. Syntax of ISWIM

The techniques we propose for optimizing analysis fall into the
following categories:

1. generate fewer states by avoiding the eager exploration of non-
deterministic choices that will later collapse into a single join
point. We accomplish this by applying lazy evaluation tech-
niques so that non-determinism is evaluated by need.

2. generate fewer states by avoiding unnecessary, intermediate
states of a computation. We accomplish this by applying com-
pilation techniques from functional languages to avoid interpre-
tive overhead in the machine transition system.

3. generate states faster. We accomplish this by better algorithm
design in the fixed-point computation we use to generate state
graphs.

Figure 2 shows the effect of (1) and (2) for a small example due
to Earl, et al. [9]. By generating significantly fewer states at a
significantly faster rate, we are able to achieve large performance
improvements in terms of both time and space.

Section 6 describes the evaluation of each optimiztion technique
applied to an implementation supporting a more realistic set of fea-
tures, including mutation, first-class control, compound data, a full
numeric tower and many more forms of primitive data and opera-
tions. We evaluate this implementation against a set of benchmark
programs drawn from the literature. For all benchmarks, the opti-
mized analyzer outperforms the baseline by at least a factor of two
to three orders of magnitude.

Section 7 relates this work to the literature and section 8 con-
cludes.

3. An analyzer for ISWIM

In this section, we give a brief review of the AAM approach by
defining a sound analytic framework for a core higher-order func-
tional language: Landin’s ISWIM [? ]. In the subsequent sections,
we will explore optimizations for the analyzer in this simplified set-
ting, but scaling these techniques to realistic languages is straight-
forward and has been done for the analyzer evaluated in section 6.

ISWIM is a family of programming languages parameterized
by a set of base values and operations. To make things concrete, we
consider a member of the ISWIM family with integers, booleans,
and a few operations. Figure 3 defines the (abstract) syntax of
ISWIM. It includes variables, literals (either integers, booleans, or
operations), A-expressions for defining procedures, procedure ap-
plications, and conditionals. Expressions carry a label, £, which is
drawn from an unspecified set and denotes the source location of
the expression; labels are used to disambiguate distinct, but syntac-
tically identical pieces of syntax. We omit the label annotation in
contexts where it is irrelevant.

The semantics are defined in terms of a machine model. The
machine compoents are defined in figure 4 and figure 5 defines the
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Values = clos (z,e,p) ||k
States s = ev(epo,k)

|  co(k,v,0)

| ap(v,v,0,k)
Continuations K = mt

| fn(v,a)

| ar(e.pra)

| fi(ee,p,a)
Environments p € Var — Addr
Stores o € Addr — P(Value)

Figure 4. Abstract machine components

o,Kk) — co (k,v,0) where v € o(p(z))

,0,Kk) —> co (k,1,0)

o, k) —> co (K, clos (z,e, p),0)

o, k) — ev®(eo, p, o', ard (e1, p, a))
where a, 0’ = push (o, k)

ev® (if(eo, €1, €2), p, 0, k) — ev’ (eo, p, 0’ , £i%(e1, ea, p, a))

where a, 0’ = push (o, k)

co (mt,v,0) — ans (o, v)
co (arf (€, p, ), v, 0) > ev’ (e, p, 7, 0 (v, a))
co (£nd(u,a), v, o) — ap’(u, v, K, o) where k € o(a)
(£i%(eo, e1, p, a), tt, ) —> ev® (eo, p, 0, k) where k € o(a)
(£i%(eo, €1, p, a), £f,0) —> ev’(e1, p, 0, k) Where k € o(a)
5
¢

S oS>

apj(clos (z,e,p),v,0,K) —> ev‘;/(e7 o0 k)
where p’,0”, 8" = bind (p, 0, z, v)
ap) (0,v,0, k) — co (k,v, o) where v € A(o,v)

Figure 5. Abstract abstract machine for ISWIM

transition relation. The evaluation of a program is defined as the
set of states reachable by the reflexive, transitive closure of the ma-
chine transition relation. The machine is a very slight variation on
a standard abstract machine for ISWIM in “eval, continue, apply”
form [5]. It can be systematically derived from a definitional inter-
preter through a continuation-passing style transformation and de-
functionalization, or from a structural operational semantics using
the refocusing construction of Danvy and Nielsen [6].

Compared with the standard machine semantics, this definition
is different in the following ways, which make it abstractable as a
program analyzer:

e the store maps addresses to sets of values, not single values,
e continuations are heap-allocated, not stack-allocated,

e there are “contour values” (written ) and syntax labels (¢)
threaded through the computation, and

e the machine is implicitly parameterized by the functions push,
bind, and A.

Concrete interpretation To characterize concrete interpretration,
set the implicit parameters of the relation given in figure 5 as
follows:

pushd (o, k) = a,0 UJa — {x}] where a ¢ o

bind} (p, o, x,v) = plz — a],0 U [a — {v}] where a ¢ o

The resulting relation is non-deterministic in its choice of ad-
dresses, however it must always choose a fresh address when al-
locating a continuation or variable binding. If we consider machine
states equivalent up to consistent renaming, this relation defines a
deterministic machine. (The relation is really a function.)

The interpretation of primitive operations is defined by setting
A as follows:

z+ 1€ A(addl, z)
tt € A(zero?,0)

z—1¢€ A(subl, z)
ff € A(zero?,z)if z # 0

Abstract interpretation To characterize abstract interpretation,
set the implicit parameters just as above, but drop the a ¢ o condi-
tion. This family of interpreters is also non-deterministic in choices
of addresses, but it is free to choose addresses that are already in
use. Consequently, the machines may be non-deterministic when
multiple values reside in a store location.

It is important to recognize from this definition that any allo-
cation strategy is an abstract interpretation [19]. In particular, con-
crete interpretation is a kind of abstract interpretation. So is an in-
terpretation that allocates a single cell into which all bindings and
continuations are stored. On the one hand is an abstract interpre-
tation that is non-computable and gives only the ground truth of a
programs behavior; on the other is an abstract interpretation that is
easy to compute but gives little information. Useful program anal-
yses lay somewhere in between and can be characterized by their
choice of address representation and allocation strategy. Uniform
k-CFA [22] is one such analysis.

Uniform k-CFA To characterize uniform k-CFA, set the alloca-
tion strategy as follows, for a fixed constant k:

push’ (o, k) = £5,0 U [£6 — {K}]
bind} (p, o, x,v) = plz — a],o Ua — {v}],d
where &' = |46
a=zd
[0]o =€
[€6] k41 = L15]k

where LI on stores is a point-wise lifting of L: o Ul o’ = Aa.o(a) U
o’(a). The |- | notation denotes the truncation of a list of symbols
to the leftmost k& symbols.

All that remains is the interpretation of primitives. For abstract
intepretation, we set A to the function that returns Z on all inputs—
a symbolic value we interpret as denoting the set of all integers.

At this point, we have abstracted the original machine to one
which has a finite state space for any given program, and thus forms
the basis of a sound, computable program analyzer for ISWIM.

4. Reduction semantics to baseline analyzer

The uniform k-CFA allocation strategy would make eval in fig-
ure 5 a computable abstraction of reachable states, but not an effi-
cient one. This is not the strategy that AAM, nor we, recommend.
Through this and the following section, we will explain a succes-
sion of approximations to reach the baseline analysis. We’ll com-
pare performance at each stage to identify the criticality of each
optimization. We ground this journey by first formulating the anal-
ysis in terms of a classic fixed-point computation.

4.1 Static analysis as fixed-point computation

Conceptually, the AAM approach calls for computing an analysis
as a graph exploration: (1) start with an initial state, and (2) com-
pute the transitive closure of the transition relation from that state.
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We can cast this exploration process in terms of a fixed-point
calculation. Given the initial state ¢o and the transition relation —,
we define the global transfer function:

F,, : P(State) — P(State).

Internally, this global transfer function computes the successors of
all supplied states, and then includes the inital state:

Feo(S)={sw}U{s |c€ Sands— '}

Then, the evaluator for the analysis computes the least fixed-point
of the global transfer function:

eval(e) = Up(F,),

where ¢o = ev©(e, &, I, mt).

To conduct this naive exploration on the Vardoulakis and Shiv-
ers example would require considerable time. Even though the state
space is finite, it is exponential in the size of the program. Even with
k = 0, there are exponentially many stores in the AAM framework.

In the next subsection, we’ll fix this with a widening and reach
polynomial (albeit of a high degree) complexity. This widening
effictively lifts the store out of individual states to create a single,
global shared store for all.

4.2 Store widening

A common technique to accelerate convergence in flow analyses
is to share a common, global store. To retain soundness, this store
grows monotonically. Formally, we can cast this optimization as
a second abstraction or as the application of a widening operator
during the fixed-point iteration. In the ISWIM language, such a
widening makes 0-CFA quartic in the size of the program. Thus,
in one step, complexity drops from intractable exponentiality to
merely daunting polynomiality.

Since we can cast this optimization as a widening, there is no
need to change the transition relation itself. Rather, what changes is
the structure of the fixed-point iteration. In each pass, the algorithm
will collect all newly produced stores and join them together. Then,
before each transition, it will install this joined store into current
state.

To describe this process, we’ll refactor the transition relation so
that it operates on a pair of a set of contexts (C') and a store (o). A
context includes all non-store components, e.g., the expression, the
environment and the stack. The refactored relation, —, becomes:

(C,0) = (C',0")
where C' = {c¢’ | wn(ec,
o = |_| {o° | wn(c,o) — wn(c',0°),c € C}
(e,p,K),0)
wn(co (v, k),0) = co (v, 0, K)
wn(ap (u,v,K),0)
wn(ans (v),0) =

o) — wn(c,0%),c € C}

wn(ev ev (e,p,0,K)

= ap (u,v,0,K)
ans (o, v)

In effect, the new store is computed as the least upper bound of all
subsequent stores.

4.3 Store-allocated results

The final approximation we make to get to our point of departure is
store-allocating results of application sub-expressions. The AAM
approach stops at the previous optimization. However, the fn con-
tinuation stores a value, and this makes the space of continuations
quadratic rather than linear in the size of the program—even for
a monovariant analysis like OCFA. Having the space of continua-
tions grow linearly with the size of the program will drop the overall
complexity to cubic (as expected).

To achieve this linearity for continuations, we allocate an ad-
dress for the value position when we create the continuation. This
address and the tail address are both determined by the label of the
application point, so the space becomes linear and the overall com-
plexity drops to cubic. This is a critical abstraction in languages
with n-ary functions, since otherwise the continuation space grows
super-exponentially.

If we specialize to OCFA, the evaluation rules become:

v (app’ (€0, €1), p, 0, k) — e (eo, p, o U [¢ =+ {K}], ar (1
(:.0),0,0) s ev (e, p.o U [ 5 {u}], £0 (¢
co (fn (¢4, 0),v,0) — ape(u, 1%, K, 0 LI [0* — {v}])

co (ar

where r € o(a),u € o(a’)
ape(clos (z,e,p), £, 0, k) —> ev
K,V o)

0,v) |veEa(l)}

ape(0,£", 0, k) —> co
where v' € {A

A~~~ —

5. Implementation techniques

In this section, we discuss the optimizations for abstract interpreters
that yield our ultimate performance gains. We have two broad
categories of these optimizations: (1) transition elimination and (2)
pragmatic improvement. The transition-elimination optimizations
reduce the overall number of transitions made by the analyzer by
performing:

1. lazy non-determinism;

2. abstract compilation; and

3. uniform literal approximation.
The pragmatic improvements reduce overhead and trade space for
time by utilizing:

1. store deltas;

2. timestamped stores; and

3. preallocated data structures.

Some techniques preserve the precision of the underlying anal-
ysis, and others do not. For any technique that loses precision, we
will discuss the design rationale for the move.

5.1 Lazy non-determinism

Tracing the execution of the analysis reveals an immediate short-
coming: there is a high degree of branching and merging in the
exploration. Surveying this branching has no benefit for precision.
For example, in a function application, (f x y), where £, x and
y each have several values each argument evaluation induces two-
way branching, only to be ultimately joined back together in their
respective application positions. Transition patterns of this shape
litter the state-graph:

To avoid the spurious forking and joining, we delay the non-
determinism until and unless it is needed in strict contexts (such
as the guard for an if a called procedure, or a numerical primitive
application). Doing so collapses these forks and joins into a linear
sequence of states:

*—o o 0o o o o

In case it’s unclear, this shift does not change the concrete se-
mantics of the language to be lazy. Rather, it abstracts over tran-
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sitions that the original non-deterministic semantics steps through.
We say the abstraction is /azy because it delays dereferencing an
address until its contents are needed as values in the semantics. It
does not change the execution order that leads to the values that are
stored in the address.

We introduce a new kind of value, addr (a), that represents a
delayed lookup of a. The following rules highlight the changes to
the semantics:

force : Store x Value — P(Value)
force(o,addr (b)) = o(b)
force(o,v) = {v}

ext(o,a,v) = o U [a — force(o,v)]

co (ary(e, p,a),v,0) — ev’ (e, p, ewt(o,a’,v), £nj(a’ , a))

)=
)=

ev (var (z), p, k,0) —> co (k,addr (p(z)),0)
o)

bind 2 (p,0,2,0) = plx > a], ext(o, a,v), s’

where 8’ = |45 ]},
a=xzd

We have two choices for how to implement lazy non-determinism.

Option 1: Lose precision; simplify implementation This seman-
tics introduces a subtle precision difference over the baseline. Con-
sider a configuration where a reference to a variable and a binding
of a variable will happen in one step. With laziness, the reference
will mean the original binding(s) of the variable or the new one,
because the actual store lookup is delayed one step (i.e. laziness is
administrative). Without laziness, the reference will fan out to all
the bindings of the variable before the new binding happens and
thus might have an observable precision difference.

Option 2: Regain precision; complicate implementation The ad-
ministrative nature of laziness means that we could remove the loss
in precision by duplicating the reduction relation to specialize vari-
able lookup. This works since in the semantics of ISWIM with
store-allocated results consumes the value component of states in
one step. This is not the case for semantics that replicate the value
component across reductions, say for popping off exception han-
dler frames. Further convolution is needed to remove the adminis-
trative nature of laziness in these semantics. Due to the increase of
conceptual complexity for negligable benefit, we decided against
this approach.

Our choice: option 1 The configurations that lead to precision
loss happen too rarely to warrant the significant increase in time
and memory needed for this eager non-determinism. Indeed, were
the variable reference a step later and another binding not made in
that step, the results of the two approaches are the same.

5.2 Abstract compilation

The prior optimization saved time by doing the same amount of rea-
soning as before but in fewer transitions. We can exploit the same
idea—same reasoning, fewer transitions—with abstract compila-
tion. Abstract compilation is precision-preserving and transforms
complex expressions whose abstract evaluation is deterministic
into “abstract bytecodes.” The abstract interpreter then does in one
transition what previously took many. In short, abstract compilation
eliminates unnecessary allocation, deallocation and branching.

The following example illustrates the essence of abstract com-
pilation effect:

app (app (app (z,e1),e2), €3)

[] : Expr — Env x Store x Kont — State
[var ()] = A(p, 0, k).co (k,addr (p(z)), o)
[1it ()] = A(p, 0, k).co (K, 1, 0)
[lam (z,e)] = A(p, 0, k).co (k, clos (z, [€], p), o)
1 = X(p, 0, )[eol (9, o' axl ([eal, )
where a, 0’ = pushg (o, k)
[1£°(eo, €1, €2)] = X (p, 0, 5).[eo]” (p, o', £1°([ea], [e2], p, @)

s
where a, 0’ = pushj (o, k)

[app*(eo, e1

Figure 6. Abstract compilation

eval(e) = {s | [e] (e, &, T, mt) —» ¢} where

o (mt,v,0) — ans (0, v)

co (ar (k, p,a),v,0) — Kk’ (p, 0, £n; (v, a))
co (£nf (u,a),v,0) —> ap) (v, u, k, o) where x € o(a)

o (£i°(ko, k1, p, a), tt,0) — ki (p, 0, k) where k € o(a)
)

o (£i°(ko, k1, p,a),££,0) — Kk (p, o, k) where k € o(a)

apg(clos (z,k,p),v,0,K) —> K (o' 0" k)
where p', 0", = bmdg(p, 0,Z,0)
ap (0,v, 0, k) — co (k,v’,7)

where k£ € o(a) and v’ € A(o,v)

Figure 7. Abstract abstract machine for compiled ISWIM

makes the following transitions:

v (app (app (app (,e1),e2),e3), p, K, 00) )]

— ev (app (app (z,€1),e2), p,ar (e3,p,ai1),01)  (2)
— ev (app (z, e1), p, ar (e2, p,az),02) 3)
— ev (z, p, ar (e1, p,as), o3) “)
— co (ar (e1, p),v,04) where v € o(p(a)) ®)

where 04 = oo U {[a1 — {k}],[a2 — ar (es3,p,a1)],[as —
ar (ez, p, az)].

The compilation step converts expressions into functions that
expect the other components of the ev state. Its definition in figure
6 shows close similarity to the rules for interpreting ev states. The
next step is to change reduction rules that create ev states to instead
call these functions. Figure 7 shows the modified reduction relation.

5.3 Locally log-based store deltas

Every step the analysis makes for the above techniques requires
joining large stores together. Not every step will modify all ad-
dresses of the store, so joining entire stores is wasteful in terms of
memory and time. We can instead log store changes and replay the
change log on the full store after all steps have completed. This uses
far fewer join operations, leading to less overhead, and is precision-
preserving.

We represent change logs as £ € StoreA = (Addr X
P(Storeable))*. Each o U [a — wvs] becomes a log addition
(a,vs):&, where £ begins empty (e) for each step. Applying the
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changes to the full store is straightforward:
replay : StoreA x Store — Store
replay(e,0) = o
replay((a,vs):€,0) = replay(§, 0 U [a — vs])

The transition relation is identical except for the addition of this
change log. Lookups will never rely on the change log, and can use
the originally supplied store unmodified:

(apg(clos (z,e,p),v,k),0,€) —> (evé/(e, oK), €&
where ', ¢',8" = bind }(p, 0, €, 7, v)

bmdg(p, 0,&,x,v) = plx — a), (a, force(o,v)):€, 8
where §' = |£5 ],
a=zd
Compilation changes to additionally take a £ component, so the

above rule’s right hand side would instead be k° (o', 0, &', k)
where k = [[e] would be in the closure.

We also lift — to accommodate for this asymmetry in the
input and output. For each state that is stepped, we feed the output
changes to the next so that all changes get accumulated:

(cs,0) = (es U cs’, replay (€, 0))

where (cs’, &) = step™ (3, cs, €)
step” (S, 2,¢) = (S,€)
step™ (S, {c} U cs, & = step™ (S Ucs™, cs, £¥)

S
es” ={c | (¢,0,6) — (¢, €°)}
" = concat{¢" | (c,0,€) — (c',€)}

Here concat : P(StoreA) — StoreA flattens the lists of
changes to one; the order in which it appends does not matter:

concat(D) = e
concat({£} U D) = append (€, concat(D))

5.4 Timestamping an imperative store

Thus far, we have made our optimizations in a purely functional
manner. For the next series of optimizations, we need to dip into the
imperative. We can motivate this entire sequence of optimizations
by focusing on the largest bottleneck in the current state-space ex-
ploration algorithm: checking to see if a state has already been seen.
Given two states, checking equality is expensive because the stores
within each are large, and every entry must be checked against
every other. Hashes can sometimes rule out inequality relatively
quickly, but the incidence of collisions and actual equality is costly.

And, there is a better way. Shivers’ original work on k-CFA
was susceptible to the same problem, and he suggested three com-
plementary optimizations: (1) make the store global; (2) update the
store imperatively; and (3) associate every change in the store with
a version number — its timestamp. Then, put timestamps in states
where previously there were stores. Given two states, the analysis
can now compare their stores just by comparing their timestamps —
a constant-time operation.

There is a subtle loss of precision in Shivers’ original time-
stamp technique that we can fix. For a given abstract state, all
writes to the global store need to be delayed until the analysis
considers all branches from that abstract state. This avoids cross-
branch pollution which would not otherwise happen, e.g., when one
branch writes to address a and another branch reads from address
a. Fortunately, given our conversion to log-based stores this change
is straightforward.

eval(e) :=
o, todo, seen, T := @&, &, [1, O
[e]Ce, @, @, € mt)
while(true):
if todo = O: return (keys(seen), o)
else:
let old := todo
todo, £ := T, €
foreach ¢ € old: A? := false; c()
unless £ = e: T += 1; replay! (&, o)

Figure 8. Imperative algorithm

At this point, we can begin to think of the analysis as an imper-
ative algorithm with six major components:

e g, the store;
® todo, the workset;

® seen, a map from states to the timestamps at which they were
last seen;

e ¢, the store changes for the current step;

e A7, a boolean tracking whether the stepped state contributed a
store change; and

e T, the timestamp of the store.

The new ewal calculation is defined in figure 8. To ensure
termination, we guard against adding c to todo by the following
check:

A7V seen(c) #T

If it succeeds, todo gets ¢ and we update seen to map c to T.

After all steps complete, we apply £ to o imperatively (with
replay!) and increase T as long as there was at least one change
in &. This logic leads to termination if we know that each (a,vs)
in £ would change the value of a in the current store. Thus, we
also guard additions to £ so that only updates that would change
the store are permitted. Each time £ is successfully extended, we
set A7 to true. Before each individual step, we set it to false.

5.5 Pre-allocating the store

Internally, the algorithm at this stage uses hash tables to model the
store. This is because stores used to be distributed to all states,
which required a compact, dynamic representation. But, such a
dynamic structure isn’t necessary when we know the structure of
the store in advance: we know all possible entries, and we know its
maximum size.

In a monovariant analysis, the domain of the store is exactly the
set of expressions in the program. If we label each expression with a
unique natural, the analysis can index directly into the store without
a hash or a collision. Even for polyvariant analyses, it is possible
to compute the maximum number of addresses and similarly pre-
allocate either the spine of the store or (if memory is no concern)
the entire store.

5.6 Abstracting literal compound data

The abstraction of compound data structures like lists has deep im-
plications for precision and performance. The classic list-heavy
benchmark boyer—a simplified implementation of the Boyer-
Moore theorem-prover—drove our own considerations for abstrac-
tions for compound data structures. Boyer’s fluent use of literal list
dooms the “natural” abstraction of lists to fail from overprecision.
In short, if we interpret a literal list > (a b ¢) as (cons ’a (cons
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’b (cons ’c ’()))), even a monovariant allocation stategy for
abstract cons cells will precisely and exactly create a 3-cell list.

If code contains a length-300 literal list, then its analysis yields a
length-300 abstract list as well. In many cases, the specific contents
of the list add little precision to the resulting analysis, and yet the
analyzer will dutifully execute recursive functions over the entirety
of these structures at every encounter. An alternative in this case is
to explicitly flatten literal lists into single abstract cells.

We explore both options here. We will first explain the natural
abstraction of tuples, and then we will explain a less precise alloca-
tion strategy from uniform k-CFA that we use for large compound
data literals that we modified from the implementation in [31].

5.6.1 Option 1: The natural abstraction

The uniform way AAM approaches a simple abstraction strategy
is to cut recursion out of the data definition by tying the recursive
knot through the abstract store. For Scheme, the grammar for values
looks like the following:

Value ::= #t | #f | (cons Value Value) | > () |

Upon evaluating a cons application, we instead allocate two
addresses a and d, join them to the respective values in the store,
and return the flattened (cons a d) value. Since these addresses
are all distinguished at different syntactic callsites in the uniform k-
CFA allocation strategy, and quoted lists are sugar for a sequence of
calls to cons, this abstraction explodes the value space. Analyzing
a function that counts the number of atoms in a literal s-expression
would actually interpret that function at least that number of times
(more because of intermediate conses). Indeed, even in our fastest
implementation, this abstraction causes the analysis of Boyer to be
430 times slower than the approach we will now describe.

5.6.2 Option 2: A precise yet compact abstraction

The number of syntactic uses of cons versus implicit uses via
literal lists is smaller in typical Scheme programs. We use the above
abstraction for these syntactic uses, but choose to interpret literal
lists as not always sugar for cascading conses. In particular, if a
list literal is “too big” (in our case length > 1), we interpret the
list as a circular data structure; the right address points back to the
cons itself, and the left address points to all of the elements of
the list. We take this farther and join the list elements together in
with a coarse type-based abstraction. In effect, large lists or vectors
of literal numbers become unbounded lists/vectors of “number.”
Heterogeneous data is combined to just “data,” rather than a union
of “number”, “string”, etc. since primitives are interpreted on every
combination of values that flow to them, and unions lead to more
primitive interpretations.

Quotation is special because it cannot introduce function val-
ues, which is important to enhancing our technique’s soundness to
conceptual complexity ratio. If we join two values of different type
together, we don’t get “anything,” which has complex meaning in
higher-order languages (Shivers’ escape semantics) and is overly
approximate. We instead get “any quotable value,” which has much
simpler semantics.

There are a few steps to consider:

e Define special value lattice elements for compound data do-
mains that can be quoted (e.g. QPair for {(cons a; di)},,
QVector for immutable vectors, etc.)

® Define a “larger” value lattice element for all quotable data,
QData

e Interpret (quote (a ...)) as (qlist a ...), anew primi-
tive function defined in figure 9, and similar definitions for im-
mutable vectors.

A(o, qlist) =(’ 0, 0)
A(o, qlist,v...+) = ((cons a d),o”)
oUlaw— |_|(v)]
Uld— {0, (cons ad)}]

/
where o

Lo
|_|(U, vS...

)
)
merge(v,v) = v
merge(n, m) = Number

merge(n,v) = QData
merge((cons a d), (cons a’ d')) = QPair
merge(QPair, (cons a d)) = QPair
merge(QPair,v) = QData

Figure 9. Quoted list primitive

¢ Extend the A axioms to include conservative meaning for these
new values (e.g. (car QData) = QData, (addl QData) =
Number and log “possible type error”) and allow them to al-
locate addresses and change the store

6. Evaluation

We have implemented, optimized, and evaluated an analysis frame-
work supporting higher-order functions, state, first-class control,
compound data, and a large number of primitive kinds of data
and operations such as floating point, complex, and exact rational
arithmetic. The analysis is evaluated against a suite of benchmarks
drawn from the literature. For each benchmark, we collect analysis
times, peak memory usage, and the rate of states-per-second ex-
plored by the analysis for each of the optimizations discussed in
section 5, cumulatively applied. The analysis is stopped after con-
suming 30 minutes of time or 1 gigabyte of space. When present-
ing relative numbers, we use the timeout limits as a lower bound
on the actual time required, thus giving a conservative estimate of
improvements.

All benchmarks are calculated as an average of 5 runs, done
in parallel, on an 12-core, 64-bit Intel Xeon machine running at
2.40GHz with 12Gb of memory.

Many benchmarks cause the baseline analyzer to take longer
than 30 minutes or to consume more 1 gigabyte of memory, at
which point the analysis is stopped. This is the case for the largest
benchmark program, which is 3,500 lines of code and takes under a
minute in the most optimized analyzer. For those benchmarks that
did complete on the baseline, the optimized analyzer outperformed
the baseline by a factor of two to three orders of magnitude.

We use the following set of benchmarks:

—

. nucleic: a floating-point intensive application taken from molec-
ular biology that has been used widely in benchmarking func-
tional language implementations [12] and analyses (e.g. [13,
31]). It is a constraint satisfaction algorithm used to determine
the three-dimensional structure of nucleic acids.

2. matrix tests whether a matrix is maximal among all matrices
of the same dimension obtainable by simple reordering of rows
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Program | LOC | Time(s) | Space (MB) | Speed (state/s)
nucleic 3492 m | 57.8 m 138 m 7K
matrix 747 t 4.9 t 63 t 68K
nbody 1435 t | 383 t| 124 t 53K
earley 667 1.1K 0.7 | 409 60 | 252 41K
maze 681 t 4.0 t 60 t 80K
church 42 44.9 0.2 86 60 | 714 43K
lattice 214 | 3485 0.4 | 231 60 | 382 72K
boyer 642 m | 18.3 m 93 m 33K
mbrotZ 69 | 373.6 0.1 | 295 60 | 540 34K

Figure 10. Overview performance comparison between baseline
and optimized analyzer (entries of ¢t mean timeout, and m mean out
of memory).

and columns and negation of any subset of rows and columns.
It is written in continuation-passing style (used in [13, 31]).

3. nbody: implements the Greengard multipole algorithm for
computing gravitational forces on point masses distributed uni-
formly in a cube (used in [13, 31]).

4. earley: Earley’s parsing algorithm, applied to a 15-symbol in-
put according to a simple ambiguous grammar. A real program,
applied to small data whose exponential behavior leads to a
peak heap size of half a gigabyte or more during concrete exe-
cution.

5. maze: generates a random maze using Scheme’s call/cc op-
eration and finds a path solving the maze (used in [13, 31]).

6. church: tests distributivity of multiplication over addition for
Church numerals (introduced by [29]).

7. lattice: enumerates the order-preserving maps between two fi-
nite lattices (used in [13, 31]).

8. boyer: a term-rewriting theorem prover (used in [13, 31]).

9. mbrotZ: generates Mandelbrot set fractal using complex num-
bers.

10. graphs: counts the number of directed graphs with a distin-
guished root and k vertices, each having out-degree at most 2. It
is written in a continuation-passing style and makes extensive
use of higher-order procedures—it creates closures almost as
often as it performs non-tail procedure calls (used by [13, 31]).

Figure 10 gives an overview of the benchmark results in terms
of absolute time, space, and speed between the baseline and most
optimized analyzer. Figure 11 plots the factors of improvement over
the baseline for each optimization step. The dip we see in transition
rate even though time taken decreases is to be expected - fewer
“easy” states are added by abstract compilation. It increases again
with the introduced algorithmic improvements. Accumulating store
changes in addition to maintaining the store accounts for the higher
memory usage when using the store delta technique without further
improvements.

Comparison with other flow analysis implementations The anal-
ysis considered here computes results similar Earl, et al.’s 0-CFA
implementation [9], which times out on the Vardoulakis and Shiv-
ers benchmark because it does not widen the store as described for
our baseline evaluator. So even though it offers a fair point of com-
parison, a more thorough evaluation is probably uninformative as
the other benchmarks are likely to timeout as well (and it would
require significant effort to extend their implementation with the
features needed to analyze our benchmark suite). That implemen-
tation is evaluated against much smaller benchmarks: the largest
program is 30 lines.

Vardoulakis and Shivers evaluate their CFA2 analyzer [29]
against a variant of 0-CFA defined in their framework and the ex-
ample we draw on is the largest benchmark Vardoulakis and Shivers
consider. More work would be required to scale the analyzer to the
set of features required by our benchmarks.

The only analyzers we were able to find that proved capable of
analyzing the full suite of benchmarks considered here were the
Soft Typing system of Wright and Cartwright [30] and, in many
ways its successor, the Polymorphic splitting system of Wright and
Jagannathan [3 1].! Unfortunately, these analyses compute an inher-
ently different and uncomparable form of analysis. Consequently,
we have omitted a complete comparison with these implementa-
tions,. The AAM approach provides more precision in terms of
temporal-ordering of program states, which comes at a cost that
can be avoided in constraint-based approaches. Consequently im-
plementation techniques cannot be “ported” between these two ap-
proaches. However, our optimized implementation is within an or-
der of magnitude of the performance of Wright and Jaganathan’s
analyzer. Although we would like to improve this to be more com-
petitive, the optimized AAM approach still has many strengths to
recommend it in terms of precision, ease of implementation and
verification, and rapid design.

7. Related work

Abstracting Abstract Machines This work clearly closely fol-
lows Van Horn and Might’s original papers on abstracting abstract
machines [26, 28], which in turn is one piece of the large body
of research on flow analysis for higher-order languages (see Midt-
gaard [17] for a thorough survey). The AAM approach sits at the
confluence of two major lines of research: (1) the study of abstract
machines [15] and their systematic construction [24], and (2) the
theory of abstract interpretation [3, 4].

Frameworks for flow analysis of higher-order programs Be-
sides the original AAM work, the analysis most similar to that pre-
sented in section 3 is the infinitary control-flow analysis of Nielson
and Nielson [22] and the unified treatment of flow analysis by Ja-
gannathan and Weeks [14]. Both are parameterized in such a way
that in the limit, the analysis is equivalent to an interpreter for the
language, just as is the case here. What is different is that both give
a constraint-based formulation of the abstract semantics rather than
a finite machine model.

Abstract compilation Boucher and Feeley [1] introduced the idea
of abstract compilation, which used closure generation [10] to
improve the performance of control flow analysis. We have adapted
the closure generation technique from composition evaluators to
abstract machines and applied it to similar effect.

Constraint-based program analysis for higher-order languages
Constraint-based program analyses (e.g. [16, 22, 31]) typically
compute sets of abstract values for each program point. These val-
ues approximate values arising at run-time for each program point.
Value sets are computed as the least solution to a set of (inclusion or
equality) constraints. The constraints must be designed and proved
as a sound approximation of the semantics. Efficient implementa-
tions of these kinds of analyses often take the form of worklist-
based graph algorithms for constraint solving, and are thus quite
different from the interpreter implementation. The approach thus
requires effort in constraint system design and implementation, and
the resulting system require verification effort to prove the con-
straint system is sound and that the implementation is correct.

! This is not a coincidence; these papers set a high standard for evaluation,
which we consciously aimed to approach.

2012/11/14



15—+

10—+

church
maze
nucleic
boyer
matrix
lattice
earley
mbrotZ
nbody
graphs

1034

102+

church
maze

nucleic
boyer

matrix
lattice
earley

1014 mbrotZ

nbody
graphs

105

church
maze
nucleic
boyer
matrix
lattice

102/ earley

101+

mbrotZ

§5.1 §5I.2 §5I.3 §5.4 §5.5

(c) Total analysis time

Figure 11. Factors of improvement over baseline for each step of optimization (bigger is better).

9 2012/11/14



This effort increases substantially as the complexity of the an-
alyzed language increases. Both the work of maintaining the con-
crete semantics and constraint system (and the relations between
them) must be scaled simultaneously. However, constraint sys-
tems, which have been extensively studied in their own right, en-
joy efficient implementation techniques and can be expressed in
declarative logic languages that are heavily optimized [2]. Conse-
quently, constraint-based analyses can be computed quickly. For
example, Jagannathan and Wright’s polymorphic splitting imple-
mentation [31] analyses the Vardoulakis and Shivers benchmark
about 25 times faster than the fastest implementation considered
here. These analyses compute very different things, so the perfor-
mance comparison is not apples-to-apples.

The AAM approach, and the state transition graphs it generates,
encodes temporal properties not found in classical constraint-based
analyses for higher-order programs. These analyses (ultimately)
compute judgments on program terms and contexts, e.g., at expres-
sion e, variable x may have value v. The judgments do not relate
the order in which expressions and context may be evaluated in a
program, e.g., it has nothing to say with regard to question like, “Do
we always evaluate e; before e2?” or “Is it always the case that a
file handle is opened, read and then closed in that order?” The state
transition graphs can answer these kinds of queries, but this does
not come for free: respecting temporal order imposes an order in
which states and terms may be evaluated during the analysis.

We view the primary contribution of this work as a systematic
path that eases the design, verification, and implementation of
analyses using the abstracting abstract machine approach to within
a factor of performant constraint-based analyses.

8. Conclusion

Abstract machines are not only a good model for rapid analysis
development, they can be systematically developed into efficient
algorithms.
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