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The problem
Higher-order program analyses are difficult to design, engineer, and use.

Designing analyses is difficult for two major reasons: language faithfulness
and property expressiveness. Modern languages are large and have semantics
that are not “mathematically pure,” making them difficult to faithfully model
abstractly. Further complications come from higher-order language features,
since there is no apparent control-flow graph that most tools rely on as a starting
point. “Analysis” covers tools that can discover properties of programs or verify
that written properties are valid. Verification properties themselves can be
written in pure logic or the tooled language itself. Both have their strengths and
weaknesses in terms of designer effort and user effort, which are often at odds
with each other.

Engineering correct and performant analyses is also no easy feat. Some
problems that need tackling include finding a data representation for good allo-
cation and cache behavior, avoiding dispatch costs, and avoiding re-computation.
Performance gains through pure blood, sweat, and tears are respectable, but
the resulting code ends up problematic. Code that is not apparently correct is
difficult to read, write, maintain, and most importantly, trust.

Using analyses such as model-checkers, interactive theorem provers, proof
assistants and a further category of “unsound analyses” requires expert knowl-
edge. The first three commonly have their own language for expressing programs
and sometimes yet another language for expressing properties of those programs.
Common programmers do not express their correctness properties as, e.g., formu-
lae in monadic second-order logic, but rather assertions or better yet contracts.
Moreover, programmers need tools for their languages, not the specialized and
restricted languages of niche groups of researchers. Full correctness is almost
never defined, much less attainable, and thus programmers are happy for any
help guaranteeing partial correctness. A key word is “guarantee” because there
are several analysis tools that are unsound — they do not report some possible
errors when they have not verified the errors are impossible. Unsoundness means
we cannot trust the tool’s report to justify performance-improving program
transformations. Thus either an expert must perform them by hand, or convince
the compiler to perform them when they are convinced (sometimes erroneously)
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that it is safe. The sound tools like interactive theorem provers and proof
assistants have a caveat in their names: the user must assist the tool, which
requires expert knowledge.

In short, program analyses require expertise in all domains of design, engi-
neering and use, making them all-around costly.

My thesis
Precise and performant analyses for higher-order languages can be systematically
constructed from their semantics.

My focus in analysis is for non-interactive methods such as flow analysis and
model-checking (note: not type systems). Outside the scope of this thesis, one
can imagine using the methods I describe to design an interactive tool1. Flow
analysis in higher-order languages encompasses both control-flow analysis (CFA)
and data-flow analysis. CFA answers the question, “what functions could be
called where? Or, more generally, what are the possible control transfers in the
program?” Data-flow analysis answers a similar question, “what data could
flow where?” but when functions are values, the two fit together. Traditionally,
flow analysis is lightweight (low polynomial time), but its specification is broad
enough to include undecidable program verification problems.

Model-checking is defined as exhaustively and automatically checking whether
a model meets its specification. In a language with contracts, a program’s
specification is part of the program itself, and thus specification checking is built
into the semantics. Model-checking, though broadly defined, is often attributed
to the verification of temporal properties of finite models rather than simply
functional correctness properties. As such, we focus on temporal properties in
higher-order languages as enforced by temporal higher-order contracts. Flow
analysis provides a way to soundly infer the finite models on which model-
checkers operate, but can additionally perform the checking too. By connecting
specification to semantics with contracts, verification becomes a reachability
problem in the abstract: when we run a program “in abstract” and never reach
blame, then all contracts hold when run “in concrete.”

A fortunate corollary of contract verification is that we can soundly remove
their runtime enforcement. Conversely, if in the abstract we reach blame, we
have an abstract path to failure that could be further refined for debugging
purposes. We can create a concrete counter-example via constraint-solving, or
simply report the endpoint or path as a possible failure. The upside to using
contracts to enforce properties at runtime is that we can squelch reporting a class
of errors and still get blame at runtime. With this approach, model-checking
becomes flow analysis, further blurring the line between the different research
areas. There are multiple advanges to the method of systematically transforming
a concrete semantics into a computable and terminating abstract semantics. To
name a few:

1e.g., Andy Keep’s semantic grep https://github.com/Ucombinator/Tapas

2

https://github.com/Ucombinator/Tapas


1. we can maintain confidence in the correctness of the verification tool,

2. we make the construction process simpler and more broadly applicable to
other languages,

3. we can factor out important abstraction points to make a pluggable analysis
framework, and

4. analysis mechanisms have a concrete semantics that can be tested prior to
a confounding abstraction process.

To demonstrate this thesis, I have explored two research programs: sys-
tematic transformations for improving precision and performance of abstract
interpreters, and concrete and abstract semantics of temporal contracts. This
proposal describes what I have accomplished with each program so far, and what
remains to be done.

1 Background

The fields of abstract interpretation and model-checking have historically focused
on analyzing first-order languages. Focusing on the first-order world pigeon-
holed these communities into analyzing C or Fortran, solely, with only a sketch
of the semantics of these languages in mind. In the higher-order world, we
have first-class functions, objects, control operators, stack inspection and other
not-so-simple features that are used every day, but are poorly understood by
our analyses. The plethora of opportunities for innovation in the world of
programming language semantics creates a demand for more widely applicable
analysis techniques as more and more programmers use and depend on them.
An approach to solving this problem, called abstracting abstract machines
(AAM) [32], is a systematic process of transforming a programming language
semantics directly into an analysis for that language.

The philosophy of AAM is to finitize a reduction relation by first redirecting
all recursive data-structures through the machine’s heap, and second to allocate
only finitely many addresses in the heap. The finite source of addresses pigeon-
holes some values to reside in the same address, so for soundness purposes, the
heap must map addresses to sets of values. Heap lookups then do not have the
same type, so the reduction relation then non-deterministically chooses a value
from the fetched set. The “analysis” is then a calculation of this abstracted
reduction relation. While delightfully simple, a direct implementation of an
application of AAM is too slow to analyze even the simplest programs. The upside
is a straightforward-to-apply and simple-to-prove method for designing one’s
analysis. Contrasting AAM with the focused work on first-order languages and
constraint-based techniques for higher-order lanugages, we see large disparities
in performance.
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2 Systematic semantics transformations to ab-
stract interpreters

2.1 Optimizing abstract abstract machines (OAAM)
Slogan Engineering tricks are semantics refactorings

Practical program analysis implementations employ a wide range of engineer-
ing tricks in order to be performant, but in the process obscure correctness with
respect to the original semantics. A contributing factor to the lack of rigor or
connection to semantics in these techniques is the unchallenged assumption that
analysis is only for C- or Fortran-like languages. These languages are essentially
Imp with second-class functions and maybe pointers and maybe heap allocation.
Higher-order program analysis comes before any “first-orderization” to something
C-like, and thus can use higher level guarantees from the high-level semantics
to make more precise predictions. Unfortunately, the techniques pioneered for
the first-order world of Fortran do not immediately carry over to languages with
first-class functions, objects, or control operators. The reason is there is no
“syntactic” control-flow graph that the analysis can assume approximates the im-
plicit reduction relation of the underlying semantics. Analyses for higher-order
languages thus look much more like interpreters for the language rather than
graph algorithms.

The connection between interpreters and higher-order flow analyses lead
to the birth of AAM, a new mindset for analysis design. The problem with
AAM was that direct implementations were too slow for practical use. AAM
produces abstract semantics that have several points of waste in terms of time
and memory:

1. the above described non-determinism creates many more states than are
necessary, increasing memory pressure and computation time;

2. expressions always perform the same actions, so many states are unneces-
sarily represented and additionally take time from dispatch on expression
type;

3. store widening is necessary for accelerating convergence, but joining several
entire stores each step is wasteful; and

4. specialized knowledge of the allocation strategy affords represention spe-
cialization.

After studying existing analysis implementations and discovering new techniques
myself, patterns emerge that are directly applicable to any abstract machine.

My contribution: performance with proofs
Store-counting, store-allocated values, lazy non-determinism, abstract compila-
tion, store deltas and preallocation give a 1000 factor improvement [17]. Most of
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these techniques are known in a slightly different formulation, and are mostly
only described informally and thus never proved correct. Each technique in this
paper is accompanied with a simple proof of correctness that follows either from
subject reduction or a straightforward case of stuttering bisimulation. See the
appendix for the evaluation details.

Further work
I have unpublished work on techniques exploiting “sparseness” that preliminary
evaluation shows a factor of 8 performance improvement in a store-widened
semantics. This should be written down in more detail to present in the disser-
tation.

2.2 The essence of summarization

Slogan
Summarization is memoization, and memoization is keyed by enough context to
encapsulate behavior

Summarization is a technique for interprocedural program analysis first
devised by Sharir and Pnueli [29] for a first-order language. The original intention
was to get better precision of interprocedural bitvector analyses on recursive
programs, and in doing so they found a precise way to match function calls
with their associated returns. The article did not mention pushdown automata,
so it may be safe to assume that the connection between summarization and
pushdown automata was not discovered until later. The added precision of
properly matched calls and returns is desirable for any analysis doing heavy
lifting; a computationally intensive lattice operation performed on additional
spurious paths can lead to significant performance hits.

Summarization in the first-order setting was still connected heavily to an
up-front representation of the control-flow graph, so it was not readily applicable
to higher-order languages. Vardoulakis and Shivers described an analysis of
a higher-order CPS language (called CFA2) that uses an adapted form of
summarization to make it “online” in the way that higher-order analyses require.
The summarization mechanism in both cases is only described post-abstraction
as an imperative worklist algorithm that drives a “local” reduction relation that
otherwise would get stuck on continuation invocations. Later the authors of
CFA2 described an augmented form of this imperative algorithm so that CFA2
could also analyze programs that use the call/cc control operator. This is a
semantic extension to a language that breaks well-bracketed calls and returns. Its
addition removed the guarantee that the summarization algorithm is a complete
abstraction of the semantics with abstracted bindings but still unbounded stacks.
However, in the common case CFA2 still improves upon regular analyses in terms
of precision and performance.

CFA2 taught us the lesson that summarization is an approach to improving
precision that just so happens to completely abstract pushdown automata.
Models of computation that do not easily abstract into pushdown automata can
still benefit from summarization.
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My contribution: summarizing semantics of delimited
control and abstract garbage collection
I found that the summarization algorithm in CFA2 has an alternative description
as a semantics refactoring that still works in the concrete. A simple abstraction
process then produces a direct-style cousin of CFA2. The refactoring is to realize
that summarization is memoization for control transfers, and memoization in the
context of impure functions, stack-awareness (either stack inspection, capture,
replacement or extension) and other non-functiony things is not keyed by the
arguments of functions, but rather it is more generally keyed by “enough context”
to reproduce the result in the presence of different surrounding context. In CFA2
without call/cc, since all bindings are allocated in the heap, “enough context”
was simply the function being called, and the heap.

An operational encoding of a memoizing machine is just to add a stack frame
at function calls that stores the function and arguments so that when it evaluates
to a value, we can store the result in a global memo table for later lookup. What
we notice is that the rest of the continuation under such a frame does not matter
to the function’s execution, so we can throw it into a table also. The only states
that we see are within functions, where the continuation is chopped off with a,
“go look up where all I should return to when I’m done” directive. When we apply
the AAM approach to this, and share the tables across the non-deterministic
paths that arise, the result is a polyvariant, direct-style CFA2.

If we naively apply the same method to the abstract machine for delimited
control, the resulting analysis may not terminate. The reason is that the
“context” we put in a continuation includes the heap, but captured continuations
are allocated in the heap. The AAM philosophy directs us to remove the
circularity with an indirection through a separate table that is not storeable in
the heap. Thus, captured continuations get further approximated by replacing
the represented heap with an address to some number of heaps. We call the map
of addresses to heaps the “continuation closure” for lack of a better term.

The continuation closure is essentially an extension of the heap, and thus they
would then have to map addresses to pairs of heaps and continuation closures!
We seem to get into an infinite regress, but we can bottom out with a join;
when we would store a closure in the closure, we instead join them together.
Memoization and returns must be updated to reflect the new approximate form
of context, but that is straightforward.

Consider the CEK machine with a “memo table” and an additional stack
frame that we insert at function calls that will direct the semantics to memoize
the result to the key stored in said stack frame (Figure 1). This semantics is a
complete abstraction of the CEK machine which we can prove given an invariant
of the memo table:

inv(〈e, ρ, κ,M〉) = ∀κ, ((e, ρ), (v, ρ′)) ∈M.

∃π ≡ 〈e, ρ, κ〉 7−→∗CEK 〈v, ρ′, κ〉.hastail(π, κ)

We can prove this invariant with subject reduction with a further lemma that
traces with a common continuation tail are still valid traces when the continuation
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ς 7−→ ς ′

〈x, ρ, κ,M〉 〈v, ρ, σ, κ,M〉 if (v, ρ) = ρ(x)
〈e0 e1, ρ, κ,M〉 〈e0, ρ, arg (e1, ρ):κ〉

〈v, ρ, arg (e, ρ′):κ,M〉 〈e, ρ′, fun (v, ρ):κ,M〉
〈v, ρ, fun (λx. e, ρ′):κ,M〉 〈e, ρ′′, ret (e, ρ′′):κ,M〉 if (e, ρ′′) /∈ dom(M)

or
〈v′, ρ′′′, κ,M〉 if (v′, ρ′′′) = M(e, ρ′′)

where ρ′′ = ρ′[x 7→ (v, ρ)]
〈v, ρ, ret (e, ρ′):κ,M〉 〈v, ρ, κ,M [(e, ρ′) 7→ (v, ρ)]〉

Figure 1: CEKM machine

is replaced by any other continuation. The continuations below ret frames don’t
matter to the result of the function, so we can throw them into a table to look up
at return time in order to produce a summary. A summary represents who called
which functions with what arguments, and what were the observed input/output
pairs for functions throughout execution.

Abstract garbage collection [24] is a technique used to improve the precision of
flow analyses that requires knowing all addresses that the stack keeps alive. In the
pushdown model, such stack introspection is not possible. With summarization,
the entirety of the stack is readable through the continuation table that is built
during execution, making touched address calculation trivial. Recent work by
the original author of abstract GC defined an entirely new model of pushdown
automata that has restricted rules for reading the current stack [12]. Again such
detours are unnecessary, and do not offer insight into how one might model
first-class control.

Further work
The proofs I have for summarizing delimited control are yet to be peer-reviewed,
so that is a priority. The stack-capturing and stack-extending capabilities of
shift and reset also give but one case study for the generality of “context”
for summarizing analyses. A further case study of stack inspection would be
strong evidence that my semantics for summarization is capable of features
more difficult to model in pushdown automata. A programming language with
the primitives with-continuation-mark, current-continuation-marks, and
continuation-mark-set->list provides a generous model of stack inspection
to study. I conjecture that the result of current-continuation-marks is enough
context to include for sound summarization. I propose to evaluate the summa-
rizing semantics against the AAM-style regular semantics on a representative
set of benchmarks for performance and precision.

2.3 Related work

Abstracting Abstract Machines
This work clearly closely follows Van Horn and Might’s original papers on
abstracting abstract machines [33, 34]. AAM in turn is one piece of the large
body of research on flow analysis for higher-order languages (see Midtgaard [23]
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for a thorough survey). The AAM approach sits at the confluence of two major
lines of research: (1) the study of abstract machines [20] and their systematic
construction [26], and (2) the theory of abstract interpretation [7, 8].

Frameworks for flow analysis of higher-order programs
Besides the original AAM work, the analysis most similar to that presented in
OAAM is the infinitary control-flow analysis of Nielson and Nielson [25] and the
unified treatment of flow analysis by Jagannathan and Weeks [16]. Both are
parameterized in such a way that in the limit, the analysis is equivalent to an
interpreter for the language, just as is the case here. What is different is that
both give a constraint-based formulation of the abstract semantics rather than a
finite machine model.

Abstract compilation
Boucher and Feeley [5] introduced the idea of abstract compilation, which used
closure generation [13] to improve the performance of control flow analysis. We
have adapted the closure generation technique from compositional evaluators to
abstract machines and applied it to similar effect.

Constraint-based program analysis for higher-order lan-
guages
Constraint-based program analyses (e.g. [25, 38, 22, 30]) typically compute sets
of abstract values for each program point. These values approximate values
arising at run-time for each program point. Value sets are computed as the least
solution to a set of (inclusion or equality) constraints. The constraints must
be designed and proved as a sound approximation of the semantics. Efficient
implementations of these kinds of analyses often take the form of worklist-based
graph algorithms for constraint solving, and are thus quite different from the
interpreter implementation. The approach thus requires effort in constraint
system design and implementation, and the resulting system require verification
effort to prove the constraint system is sound and that the implementation is
correct.

This effort increases substantially as the complexity of the analyzed language
increases. Both the work of maintaining the concrete semantics and constraint
system (and the relations between them) must be scaled simultaneously. However,
constraint systems, which have been extensively studied in their own right, enjoy
efficient implementation techniques and can be expressed in declarative logic
languages that are heavily optimized [6]. Consequently, constraint-based analyses
can be computed quickly. For example, Jagannathan and Wright’s polymorphic
splitting implementation [38] analyses the Church numeral benchmark about 5.5
times faster than the fastest implementation considered here. These analyses
compute very different things, so the performance comparison is not apples-to-
apples.
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The AAM approach, and the state transition graphs it generates, encodes
temporal properties not found in classical constraint-based analyses for higher-
order programs. Such analyses (ultimately) compute judgments on program
terms and contexts, e.g., at expression e, variable x may have value v. The
judgments do not relate the order in which expressions and context may be
evaluated in a program, e.g., it has nothing to say with regard to question like,
“Do we always evaluate e1 before e2?”The state transition graphs can answer
these kinds of queries, but evaluation demonstrated this does not come for free.

Pushdown analyses
The insights into the essence of summarization are directly the product of
CFA2 [35], which itself derives from Sharir and Pnueli [29]. By breaking down the
semantic features of CFA2 into orthogonal components, summarization and stack
frames, we see that PDCFA [11] is simply CFA2 without stack frames. PDCFA’s
analysis method uses graph traversals to find stack push sites rather than storing
context in the state itself for a table lookup. Additionally, PDCFA does these
traversals for each stack frame pop instead of at function call boundaries, which
is costly and unnecessary.

The work in pushdown garbage collection was done concurrently and inde-
pendently of Earl et al. [12], based on the original work on abstract garbage
collection [24]. I am now a co-author on the journal version of that work, al-
though I maintain that my summarization approach is more general (can handle
first-class control), and simpler to apply to an arbitrary language since it has a
concrete interpretation.

Further afield, there is work in higher-order recursion schemes (HORS) [19] for
model-checking higher-order programs that is co-expressive with a generalization
of pushdown systems: collapsible pushdown systems. The translation from
arbitrary languages to HORS to begin with is non-trivial unless your language is
pure and simply typed. To handle more complex languages, the HORS community
developed an undecidable, untyped variant that they would later abstract within
their infinite intersection type machinery to approximate [31]. There is work
translating the Krivine machine to HORS [27], but the methods employed are
not widely applicable to other machines. Our focus with systematic translations
directly from the language semantics seeks to make analysis techniques more
widely applicable.

Finally, there is a temporal logic based on nested words that uses summariza-
tion as part of its saturation method of checking propositions, called NWTL [3].
The theory here again assumes a program model already in a finite nested word
automaton, and uses a non-online algorithm so higher-order languages could not
be easily analyzed.

3 Temporal higher-order contracts

Temporal higher-order contracts are a runtime monitoring system for specifying
the temporal use of higher-order functions [10]. Flow analysis has historically
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been used for proving “shallow” properties (one or two quantifiers in a temporal
logic formula, if so expressed [28]), whereas model-checkers have been used
for proving properties with deeply nested temporal modalities. Furthermore,
model-checkers are applied extra-linguistically: a user will pose a formula in a
propositional temporal logic for a model-checker to check against a synthesized
model, necessarily abstractly. The programmer cannot dynamically test such
propositions to debug their specification before attempting verification, because
the formula is outside of the language. The field of runtime monitoring has
created solutions to the latter, but runtime monitoring has never been the source
of model-checking queries.

Contract verification is a large area that has produced techniques that are
complementary to temporal contract verification. The first hurdle to overcome
for verifying temporal contracts is to define them. The published work on
temporal contracts has a problematic formalization and implementation; both
violate expectations about their behavior. Specifically, the temporal contracts
are given a denotational semantics in terms of prefixes of full program traces.
Our expectations for a negated temporal contract are that once execution
matches the temporal contract under negation, we blame. However, a contract
such as ¬A allows AA in its full trace semantics (since the literature defines
[[¬T ]] = Traces \ [[T ]]), which in turn allows A in the prefix semantics.

My contributions
I defined a new semantics of temporal contracts that is aware of its prefix inter-
pretation, necessitating a different interpretation of negation. Our expectation
is that any (nonempty) trace in the denotation of a contract should not be a
prefix of any trace in the denotation of the negated contract:

[[¬T ]] = {ε} ∪ {π : ∀π′ ∈ [[T ]] \ {ε}.π′ 6v π}

The language of temporal contracts closely resembles regular expressions, but
allow for matching on events to later perform equality tests. Regular expression
derivatives still apply in this domain, with a slight reworking to accomodate
matching and a different rule for negation:

∂A¬T
def
= ν(∂AT ) = ε→ ⊥,¬ ∂AT

I have proved that this new notion of derivative is indeed a derivative with respect
to the denotational semantics ([[∂AT ]] = {π : Aπ ∈ [[T ]]}). The interpretation is
that a runtime monitor is a temporal contract derivative, and it should blame
the sender of the event that made the derivative not nullable (i.e., blame ` if `
sends A and ν(∂AT ) 6= ε).

Further work
The abstract semantics of temporal contracts has posed some serious challenges.
Equality checking during matching is unusably imprecise in the abstract, since
syntactically equal closures only may be equal. We can import a technique such
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as abstract counting to improve equality checking to allow for may, must and
never, but there are further problems. The derivatives of temporal contracts
have a combinatorial explosion due to the added uncertainty in matching. The
derivative of a temporal contract is a set of possible derivatives, each of which
must be explored as the possible next state of the runtime monitor. Composing
possible derivatives in ∪,∩ and · forms leads to a large space of possibilities. I
propose to explore possible widenings and/or representational optimizations to
make this approach feasible for moderately sized programs.

3.1 Related work

Runtime monitoring
Monitoring sequences of actions at runtime is a mature and active area of research.
Temporal higher-order contracts are themselves a runtime monitoring system.
The notion of an action is reminiscent of aspect-oriented programming’s notion
of a join-point, and thus we see several systems built on AspectJ [18] that offer
a domain-specific language for running advice when the action trace matches
a specified pattern, e.g., Tracematches [2] and J-LO [4]. Tracematches use a
language similar to temporal contracts but do not support negation; they also
only provide a way to execute given advice, and not monitor the satisfaction of
a specification. J-LO on the other hand is a monitoring system based on LTL
propositions with binding constructs (named DLTL). J-LO’s goal is closer to
temporal contracts, but its language is not; conversely, tracematches match the
language and not the goal. Both systems are also tied to Java’s class structure, so
they cannot natively express properties of higher-order functions or refinements
on values.

Interface automata [1] give a lightweight mechanism for monitoring compo-
nent interactions that send first-order data. They are closely related to temporal
contracts, except they do not have binding in the specifications and thus can-
not reason about higher-order functions. There is also no discussion of any
implementation of the monitoring system.

Further discussion of runtime monitoring systems can be found in Meredith
et al. [21].

Model-checking
The behemoth of model-checking higher-order languages is the Java PathFinder
(JPF) [37], which offers both an explicit state model-checker, and a symbolic
execution engine. Although the language (Java) is higher-order, both the model-
checker and symbolic execution engine can only check first-order properties.
The JPF is its own JVM implementation, so one could reasonably see temporal
higher-order contracts implemented in a straight-forward way.

Additional model-checkers for Java such as Bandera or ESC/Java use different
methods. The former uses CFA to extract a finite model to translate into a
back-end model checker’s language. This has obvious precision deficiencies since
data- and path-sensitive information that a model-checker has does not prune the
model the way an intermixed model construction and model checking analysis
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would. The latter is an unsound invariant checker for first-order assertions that
generates verification conditions and uses a theorem prover (Simplify [9]) to
discharge them.

4 Research plan

Below are the research projects I’ve outlined, along with my estimated time
investment:

Project Date range Time
Summarization Proposal - Feb 15 ∼1.5 mo. (1 mo. paternity leave)
Temporal contracts Feb 15 - Apr 15 2 mo.
Stack inspection Proposal - Apr 15 parallel
Writing Apr 15 - Aug 15 4 mo.
Total 7 mo.
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6th International Conference, CC’96 Linköping, Sweden, April 2426, 1996
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Talpin, J.P., Thackray, J., Thomas, S., Walters, P., Weis, P., Wentworth, P.:
Benchmarking implementations of functional languages with “pseudoknot”,
a float-intensive benchmark. Journal of Functional Programming 6(04),
621–655 (1996)

[15] Jagannathan, S., Thiemann, P., Weeks, S., Wright, A.: Single and loving
it: must-alias analysis for higher-order languages. In: POPL ’98: Proceed-
ings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 329–341. ACM (1998)

[16] Jagannathan, S., Weeks, S.: A unified treatment of flow analysis in higher-
order languages. In: POPL ’95: Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. pp. 393–407.
ACM Press (1995)

[17] Johnson, J.I., Labich, N., Might, M., Van Horn, D.: Optimizing abstract
abstract machines. In: Morrisett, G., Uustalu, T. (eds.) Proceedings of the
18th ACM SIGPLAN international conference on Functional programming.
ACM SIGPLAN, ACM Press (2013)

13



[18] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold,
W.G.: An overview of AspectJ. In: Proceedings of ECOOP 2001 - Object-
Oriented Programming: 15th European Conference, Budapest, Hungary,
June 18-22, 2001. pp. 327–354. Springer Verlag (2001)

[19] Kobayashi, N.: Model-checking higher-order functions. In: Proceedings
of the 11th ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming. pp. 25–36. PPDP ’09, ACM (2009)

[20] Landin, P.J.: The mechanical evaluation of expressions. The Computer
Journal 6(4), 308–320 (1964)

[21] Meredith, P., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the
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A OAAM evaluation results

The analysis is evaluated against a suite of Scheme benchmarks drawn from the
literature.

1. nucleic: a floating-point intensive application taken from molecular bi-
ology that has been used widely in benchmarking functional language
implementations [14] and analyses (e.g. [38, 15]). It is a constraint sat-
isfaction algorithm used to determine the three-dimensional structure of
nucleic acids.

2. matrix tests whether a matrix is maximal among all matrices of the
same dimension obtainable by simple reordering of rows and columns and
negation of any subset of rows and columns. It is written in continuation-
passing style (used in [38, 15]).
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Program LOC Time (sec) Space (MB) Speed state
sec

nucleic 3492 m 66.9 m 238 44 9K
matrix 747 t 3.4 294 114 68 87K
nbody 1435 t 22.9 361 171 67 57K
earley 667 1.1K 0.4 409 114 252 95K
maze 681 t 2.6 332 114 55 118K
church 42 44.9 0.1 86 114 714 56K
lattice 214 348.5 0.2 231 114 382 104K
boyer 642 m 13.4 m 130 39 39K
mbrotZ 69 373.6 0.1 295 114 540 63K

Figure 2: Overview of benchmark results

3. nbody: implementation [39] of the Greengard multipole algorithm for
computing gravitational forces on point masses distributed uniformly in a
cube (used in [38, 15]).

4. earley: Earley’s parsing algorithm, applied to a 15-symbol input according
to a simple ambiguous grammar. A real program, applied to small data
whose exponential behavior leads to a peak heap size of half a gigabyte or
more during concrete execution.

5. maze: generates a random maze using Scheme’s call/cc operation and
finds a path solving the maze (used in [38, 15]).

6. church: tests distributivity of multiplication over addition for Church
numerals (introduced by [36]).

7. lattice: enumerates the order-preserving maps between two finite lattices
(used in [38, 15]).

8. boyer: a term-rewriting theorem prover (used in [38, 15]).

9. mbrotZ: generates Mandelbrot fractal using complex numbers.

10. graphs: counts the number of directed graphs with a distinguished
root and k vertices, each having out-degree at most 2. It is written
in a continuation-passing style and makes extensive use of higher-order
procedures—it creates closures almost as often as it performs non-tail
procedure calls (used by [38, 15]).

Figure 2 gives an overview of the benchmark results in terms of absolute time,
space, and speed between the baseline and most optimized analyzer. Figure 3
plots the factors of improvement over the baseline for each optimization step.
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(c) Peak memory usage improvement (baseline / optimized)

Figure 3: Factors of improvement over baseline for each step of optimization
(bigger is better).
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